

Just Ramp-up: Unleash the Potential of Regression-based Estimator for A/B Test under Network Interference

Qianyi Chen

Tsinghua University, School of Economics and Management

QR code of paper

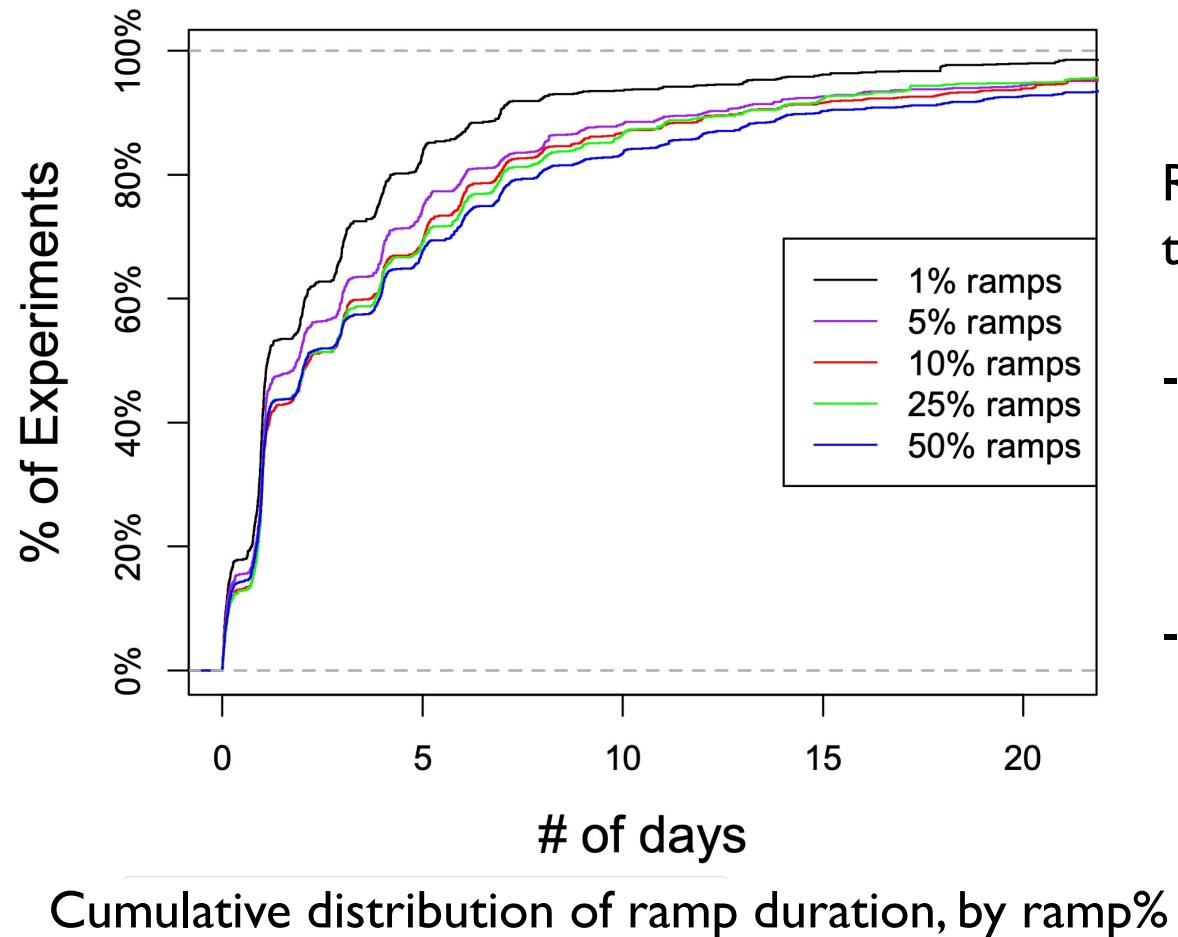
Background: A/B Testing on the Network

- A/B test is the gold standard for modern platforms to support data-driven decision making on launching new product features, e.g., new algorithm/UI.
- Many platforms involve a network structure connecting its users, e.g., social network (LinkedIn, WeChat), two-sided market (Taobao, eBay).
- We call the **network interference** exists, when the outcome of certain units can also be influenced by the treatments allocated to its neighbors.
- Network interference is common in practice of large platforms and introduce substantial bias that blurs the conclusion of A/B testing.

Background: Tackling Network Interference

- Experimental design
 - Cluster-level randomization (Hudgens 2008, Ugander 2013)
 - Refined covariance design of treatment vector (Candogan 2023, Chen 2023)
- Estimation
 - Network-adaptive estimator (Liu 2022&2024, Ugander 2023)
 - Counterfactual prediction with regression model (Leung 2024, Wu 2025)
- Our position: **data-centric** engineering for better regression-based estimation.

Ramp-up Process



Ramp-up: gradually increasing the traffic to experiments.

- Resource constraint: more than 2,000 experiments are newly launched every week.
- Risk control: many new product features are useless or even harmful for user experience.

Basic Setting

- We consider binary treatment vector

$$\mathbf{z} = (z_1, z_2, \dots, z_n) \in \{0, 1\}^n.$$

- The estimand in the A/B test is global average treatment effect (GATE)

$$\tau := \frac{1}{n} \sum_{i \in [n]} (Y_i(\mathbf{1}) - Y_i(\mathbf{0}))$$

- We consider **unit-level complete randomization** for analytical tractability

$$\sum_{i=1}^n z_i = d \quad \mathbb{E}[z_i] = \frac{d}{n}$$

- Ramp-up: multiple experiments with increasing treatment proportions

$$c_1 \leq c_2 \leq \dots \leq c_T \quad c_t = \frac{d_t}{n}$$

Potential Outcome Model

- To enable **exact** bias/variance analysis, we need a parametric form of potential outcomes, which we call **general linear interference model**

$$Y(\mathbf{z}) = \beta_0 + \beta_1 \mathbf{z} + B \mathbf{z} + \epsilon$$

- It allows for general long-distance interference, in contrast to traditional 1-hop interference.
- Example: **Linear-in-means model** ($B = D^{-1}A$, normalized adjacency)

$$Y_i(\mathbf{z}) = \beta_0 + \beta_1 z_i + r \frac{\sum_{j \in \mathcal{N}(i)} z_j}{\deg_i} + \epsilon$$

Understand the GATE Estimation

- Estimation of GATE: an extrapolation task
 - The available data is only experimental data with **small** treatment proportions, e.g., 5%, 10%, etc.
 - The target is the mean outcomes under **global treatment** and global control.
- Estimation strategy
 - **Macro-level**: views the mean outcomes as 1-d function of treatment proportion p , $M(p)$. It's almost impossible to predict $M(1)$ with $M(0.05)$, $M(0.1)$.
 - **Micro-level**: the treated neighbors of some units can approach the case of $p = 1$ **locally**. Our regression are run on the outcomes of units.

Regression-based Estimator

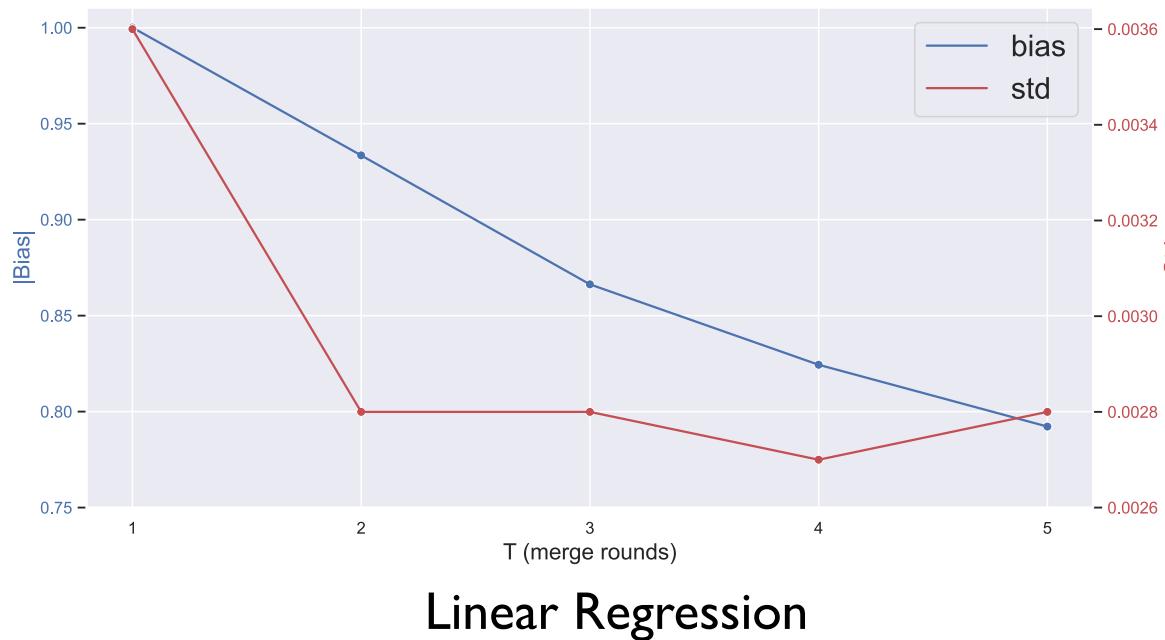
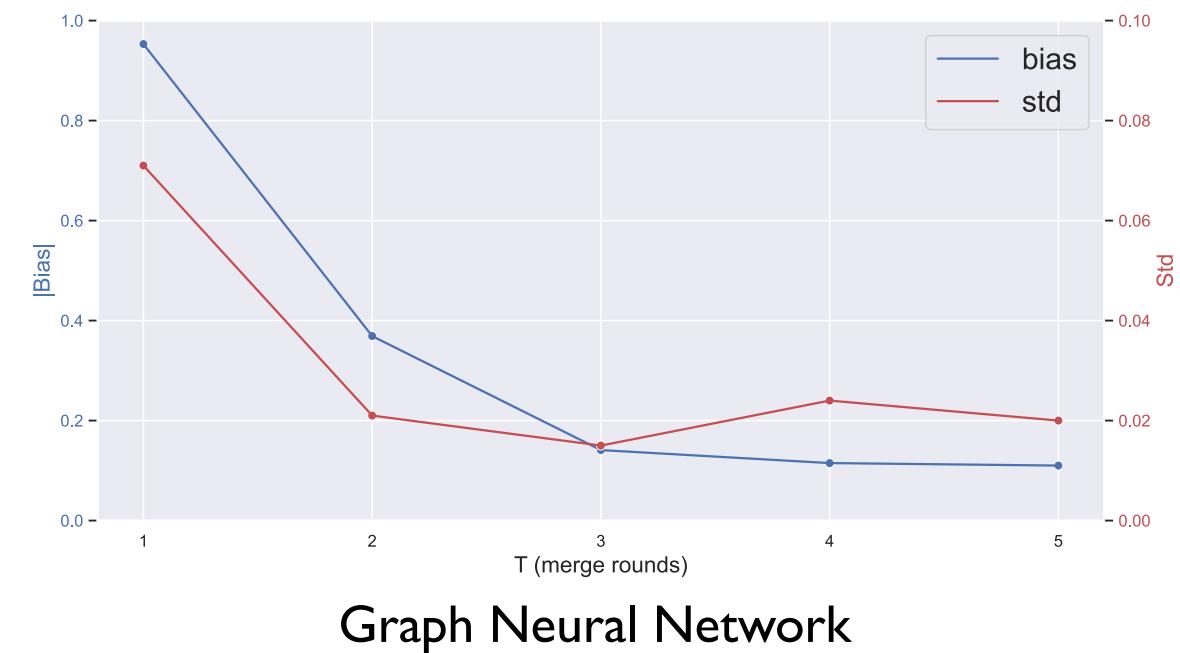
- We then formally define the regression-based estimator:
A prediction function f that maps the treatment vector z and adjacency matrix A into the outcomes of each unit.

$$f : \{0, 1\}^n \times \mathcal{A} \rightarrow \mathbb{R}^n$$

- Given this regression function, we give the GATE estimator as the difference between two predicted mean outcomes:

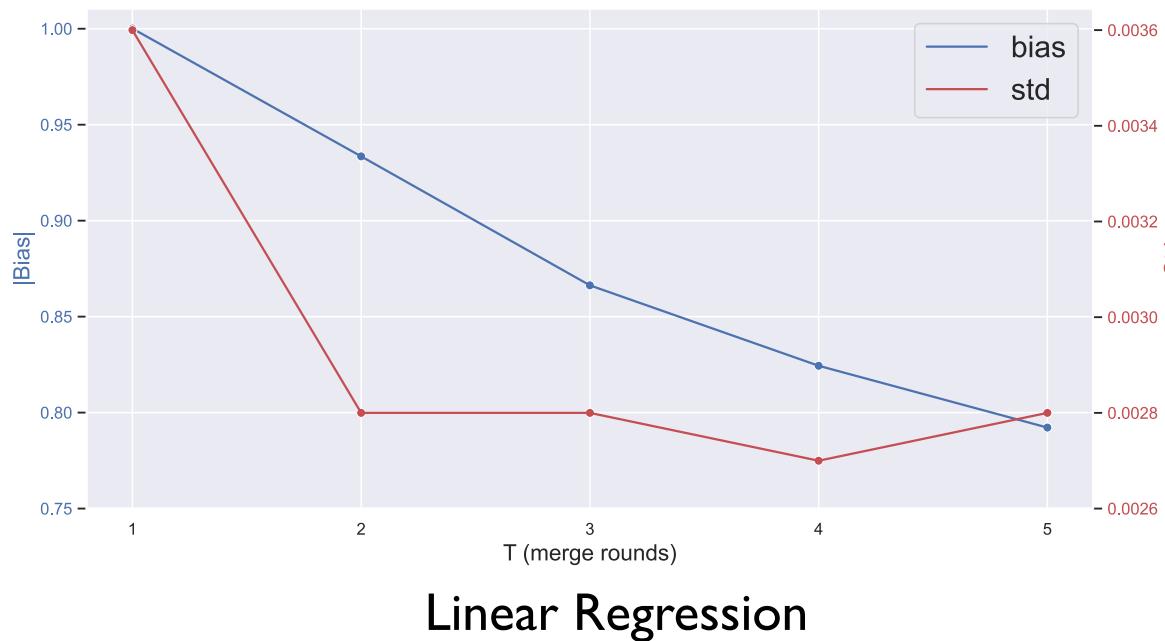
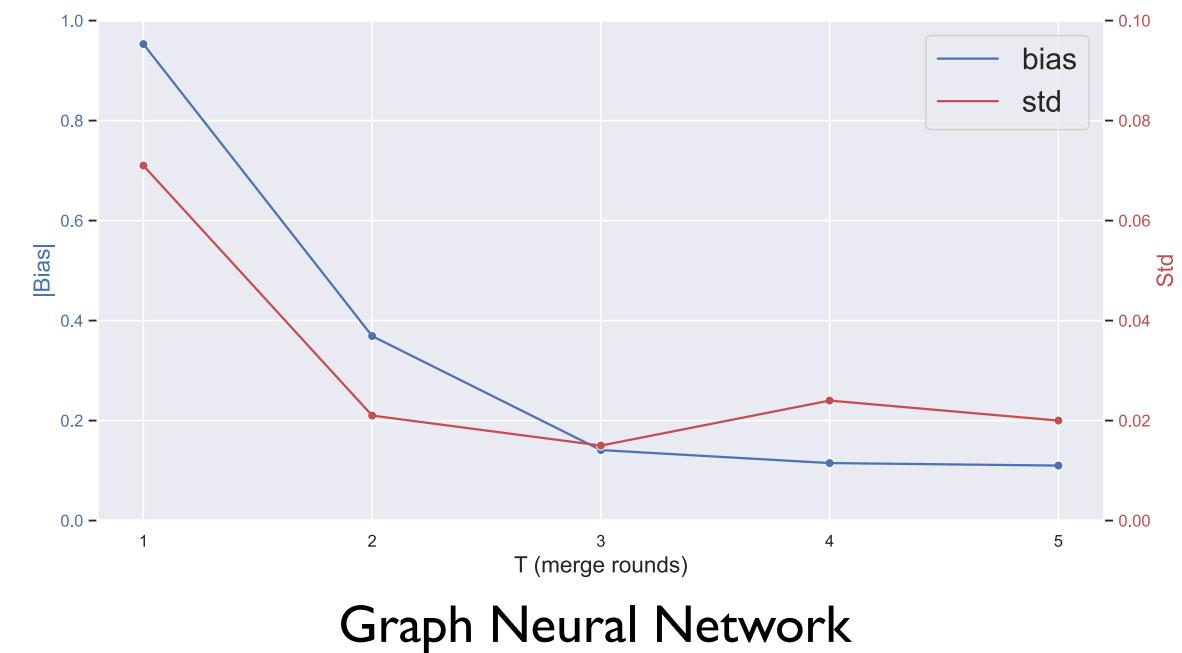
$$\hat{\tau}(f) = \frac{1}{n} \mathbf{1}^\top (f(\mathbf{1}, A) - f(\mathbf{0}, A))$$

Preview: Power of Merging



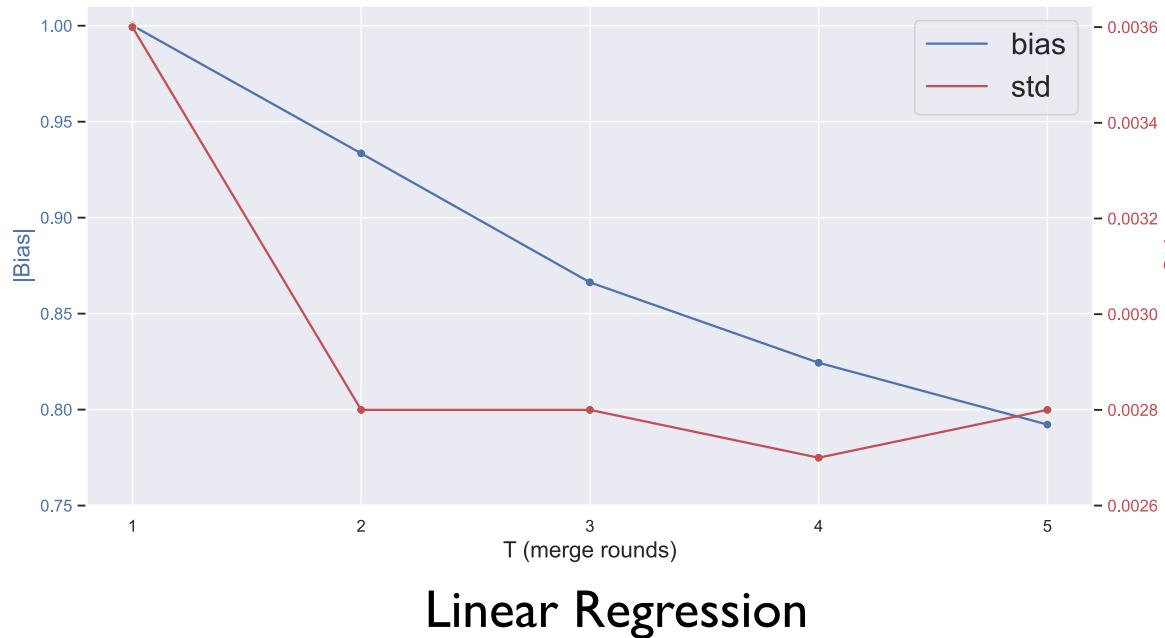
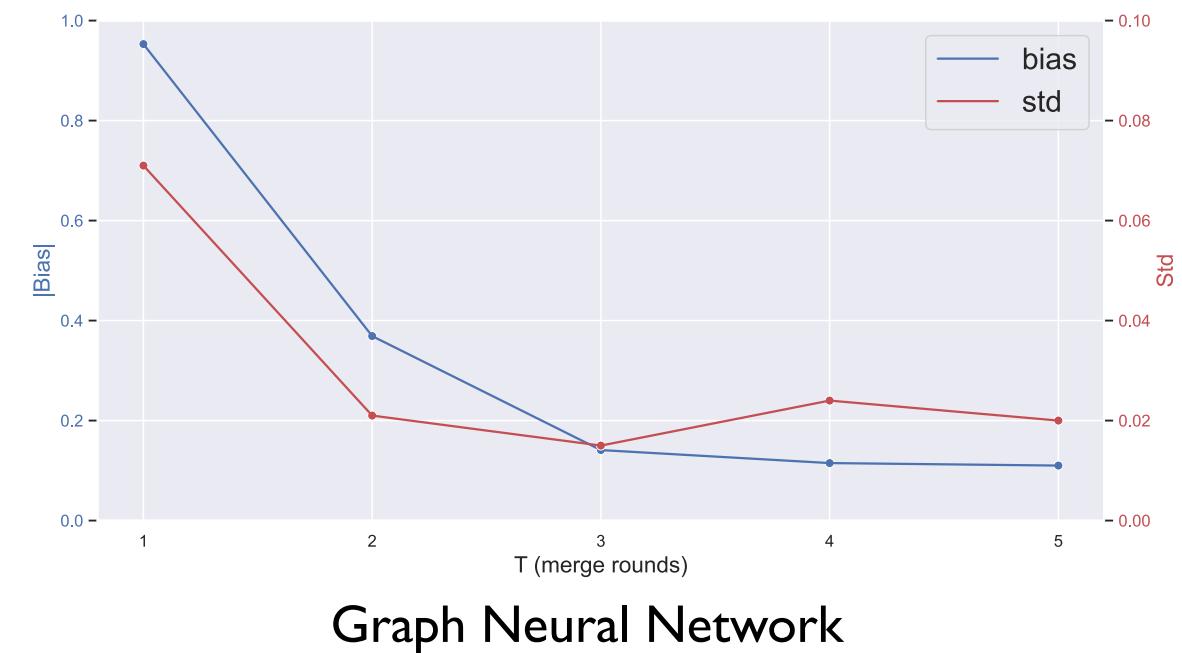
Our methodology: merging experimental data at previous ramp-up steps to train the regression model, instead of only the current step.

Preview: Power of Merging



Merging setting: $(c_1, c_2, \dots, c_5) = (2\%, 5\%, 10\%, 25\%, 50\%)$. The t -th point corresponds to the result with merging the steps (c_{6-t}, \dots, c_5) .

Preview: Power of Merging



Main messages:

- Bias dominates in this trade-off, even for the complex regression function like GNN.
- Substantial bias reduction is achieved through training regression model on merged data.

Linear Regression Estimator

- Why we choose linear regression as starting point
 - The empirical risk minimizer admits **closed-form**.
 - The conclusion derived from it can be **empirically generalized** to other advanced regression functions, e.g., GNN.
- Linear regression function:
$$f(\mathbf{z}, A) = X(\mathbf{z})\hat{\theta}$$
- Here, we do not incorporate network-dependent feature and use OLS

$$X(\mathbf{z}) = (1, \mathbf{z}) \quad \hat{\theta} = (X(\mathbf{z})^\top X(\mathbf{z}))^{-1} X(\mathbf{z})^\top Y$$

Further Tractability Issues

- The key for exact analysis of bias/variance lies in resolving the randomness of design matrix $X(\mathbf{z})$
- The matrix $(X(\mathbf{z})^\top X(\mathbf{z}))^{-1}$ involves a **determinant in the denominator**, making the analysis intractable if the determinant $\det(X^\top X)$ is random.

$$X^\top X = \begin{pmatrix} n & \mathbf{z}^\top \mathbf{1} \\ \mathbf{z}^\top \mathbf{1} & \|\mathbf{z}\|_2^2 \end{pmatrix} = \begin{pmatrix} n & d \\ d & d \end{pmatrix}$$

Complete randomization: allocate exact d treatments to n units

One-step Experiment

Theorem 1 The bias and variance of the linear regression estimator under general linear interference are given by:

$$\text{Bias}(\hat{\tau}_{(1)}) = -\frac{\left(\sum_{i,j} B_{ij}\right)}{n} \left(\frac{1}{n(n-1)} + 1 \right)$$

Recall: B_{ij} denotes impact imposed by j on i

and

$$\begin{aligned} \text{Var}(\hat{\tau}_{(1)}) &= \left(\frac{1}{nc(1-c)} \right)^2 \left(\left(\sum_{i,j} B_{ij} \right)^2 \left(\frac{c^3(c-1)}{n} + O\left(\frac{1}{n^2}\right) \right) + \left(\sum_{i,j,k} B_{ij}B_{kj} \right) \left(\frac{c(c-1)}{n} + O\left(\frac{1}{n^2}\right) \right) \right. \\ &\quad \left. + \left(\sum_{i,j,l} B_{ij}B_{il} \right) \left(c^3(1-c) + O\left(\frac{1}{n}\right) \right) + \left(\sum_{i,j} B_{ij}^2 \right) \left(c^2(1-c) + O\left(\frac{1}{n}\right) \right) \right. \\ &\quad \left. + \left(\sum_{i,j} B_{ij}B_{ji} \right) \left((1-c)^2c^2 + O\left(\frac{1}{n}\right) \right) \right) - \left(\sum_{i,j} B_{ij} \right)^2 \frac{1}{(n(n-1))^2} + \frac{\sigma_e^2}{nc(1-c)} \end{aligned}$$

Intensity of Regular Interference

Assumption 1 (Intensity of regular interference) *Based on the proposed general linear interference model, we further assume that for all $i \in [n]$*

$$\sum_{j=1}^n |B_{ij}| = O(1)$$

Moreover,

$$\sum_{i,j} B_{ij} = \Theta(n)$$

and

$$\sum_j \left(\sum_i B_{ij} \right)^2 = O(n)$$

Intensity of Regular Interference

Assumption 1 (Intensity of regular interference) *Based on the proposed general linear interference model, we further assume that for all $i \in [n]$*

$$\sum_{j=1}^n |B_{ij}| = O(1)$$

Recall: B_{ij} denotes impact imposed by j on i

Interference does not overshadow direct effect

Moreover,

$$\sum_{i,j} B_{ij} = \Theta(n)$$

Bias is considerable (otherwise bias would diminish; trivial case)

and

$$\sum_j \left(\sum_i B_{ij} \right)^2 = O(n)$$

Limited cumulative influence of opinion leaders

Intensity of Regular Interference

Assumption 1 (Intensity of regular interference) *Based on the proposed general linear interference model, we further assume that for all $i \in [n]$*

$$\sum_{j=1}^n |B_{ij}| = O(1)$$

Moreover,

$$\sum_{i,j} B_{ij} = \Theta(n)$$

and

$$\sum_j \left(\sum_i B_{ij} \right)^2 = O(n)$$

Example: Linear-in-means model

$$Y_i(\mathbf{z}) = \beta_0 + \beta_1 z_i + r \frac{\sum_{j \in \mathcal{N}(i)} z_j}{\deg_i} + \epsilon$$

For the instance $B = D^{-1}A$:

- The first two assumptions always hold.
- The third assumption imposes substantial restriction on adjacency matrix A .

A sufficient but not necessary condition:
restricted growth rate (common in literature)

- Star graph \times
- Complete graph \checkmark

One-step Experiment

- In the regime of regular interference, we arrange the results and conclude that the **bias is the dominant factor**:

Corollary 1 *Based on Assumption 1 and Theorem 1, we further conclude that:*

$$\text{Bias}(\hat{\tau}_{(1)}) = \Theta(1)$$

$$\text{Var}(\hat{\tau}_{(1)}) = \Theta(1/n)$$

Two-step Experiment

- What's new:

$$B \xrightarrow{\text{expand}} \begin{pmatrix} B & 0 \\ 0 & B \end{pmatrix} \quad \mathbf{z} \xrightarrow{\text{expand}} \begin{pmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{pmatrix}$$

- Sample size: $n \rightarrow 2n$
- Remark: For incorporating temporal interference, just add off-diagonal elements into $\text{diag}(B, B)$. Even if the temporal effect exists, we can still focus on the **cross-sectional part** by imposing appropriate assumptions.

Bias Reduction Brought by Merging

Theorem 2 *The bias of the linear regression estimator trained on merged data ($T = 2$) under general linear interference is given by:*

$$\text{Bias}(\hat{\tau}_{(2)}) = -\frac{\sum_{ij} B_{ij}}{n} \left(1 - \frac{(n-1)(c_1 - c_2)^2 + 2(c_1^2 + c_2^2) - 2(c_1 + c_2)}{(n-1)(c_1 + c_2)(2 - (c_1 + c_2))} \right)$$

When $n > 2(c_1 + c_2 - c_1^2 - c_2^2) / (c_1 - c_2)^2 + 1$, we have:

$$\frac{(n-1)(c_1 - c_2)^2 + 2(c_1^2 + c_2^2) - 2(c_1 + c_2)}{(n-1)(c_1 + c_2)(2 - (c_1 + c_2))} \in (0, 1)$$

This directly implies that $\text{Bias}(\hat{\tau}_{(1)})$ and $\text{Bias}(\hat{\tau}_{(2)})$ shares the same sign. A substantial reduction in the magnitude of bias from $\hat{\tau}_{(1)}$ to $\hat{\tau}_{(2)}$ is given by:

$$|\text{Bias}(\hat{\tau}_{(1)})| - |\text{Bias}(\hat{\tau}_{(2)})| = \frac{|\sum_{ij} B_{ij}|}{n} \frac{(c_1 - c_2)^2}{(c_1 + c_2)(2 - (c_1 + c_2))} + O\left(\frac{1}{n}\right)$$

Bias Reduction Brought by Merging

- Bias reduction:

$$|\text{Bias}(\hat{\tau}_{(1)})| - |\text{Bias}(\hat{\tau}_{(2)})| = \frac{\left| \sum_{ij} B_{ij} \right|}{n} \frac{(c_1 - c_2)^2}{(c_1 + c_2)(2 - (c_1 + c_2))} + O\left(\frac{1}{n}\right)$$

- Intuition: lower c_1 and larger c_2 will bring us closer to the desired scenario of global control and global treatment.
- Given a budget $\max\{c_1, c_2\} \leq c$, the best we can do: $c_1 = 0, c_2 = c$
$$\text{Bias}(\hat{\tau}_{(2)}) = -\frac{\sum_{ij} B_{ij}}{n} \left(1 - \frac{c}{2-c}\right) + O\left(\frac{1}{n}\right)$$
- This is still unsatisfactory, which motivates refined regression functions.

Bias Reduction Brought by Merging (T -step)

Theorem 3 *For linear regression estimator trained on merged T -step data, the relative bias is given by:*

$$\text{Bias}(\hat{\tau}_{(T)}) = -\frac{\sum_{ij} B_{ij}}{n} \left(1 - \frac{T \sum_{t=1}^T c_t^2 - \left(\sum_{t=1}^T c_t \right)^2}{\left(\sum_{t=1}^T c_t \right) \left(T - \sum_{t=1}^T c_t \right)} \right) + O\left(\frac{1}{n}\right)$$

- Is merging still effective? **Yes.**
- Does T -step necessarily bring further bias reduction (v.s. fewer steps)?
No. It improves only when an experiment with more extreme proportion is merged in.
- The benefit of merging 2-step experimental data is intrinsic.

Variance Remains Negligible

- Besides complex cross-units variance, there can also be correlations of treatments in the temporal dimension.
- We consider two cases, which is *temporally independent experiments* and *staggered rollout experiments* (non-decreasing treatments on the fly)

Theorem 4 *For the linear regression estimator trained on merged T -step temporally independent and staggered rollout experimental data, the order of variance is given by*

$$\text{Var}(\hat{\tau}_{(T)}) = \Theta\left(\frac{1}{n}\right)$$

Further Intuition: Variation of Exposures

- The network exposure can be viewed as a representation of treatment vector in the interference term.
- For the linear-in-means model, the exposure can be specified as:

$$Y_i(\mathbf{z}) = \beta_0 + \beta_1 z_i + r \frac{\sum_{j \in \mathcal{N}(i)} z_j}{\deg_i} + \epsilon \quad e_i = \frac{\sum_{j \in \mathcal{N}(i)} z_j}{\deg_i}$$

- We claim that the key challenge in learning the interference effect is **ensuring sufficient variation** in treatment exposures $\{e_i\}_{i=1}^n$.

Further Intuition: Variation of Exposures

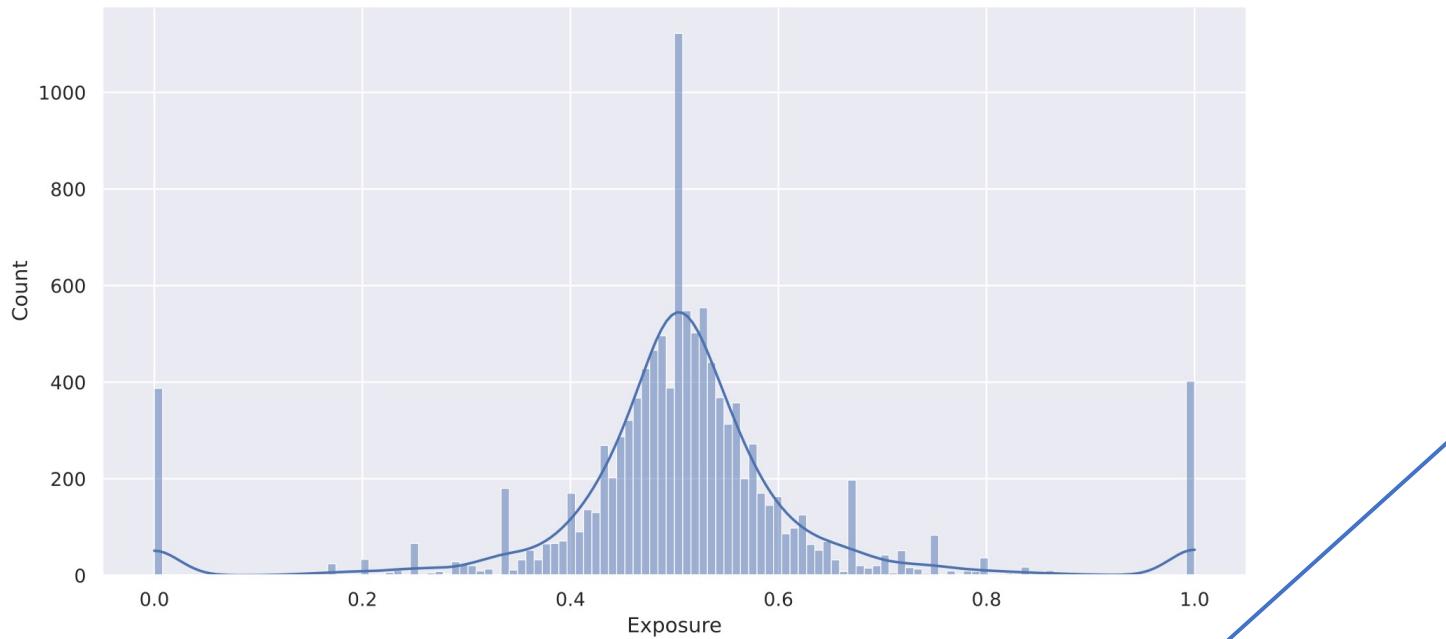


Figure 2: The distribution of treatment exposures under complete randomization with a treatment proportion of $c = 0.5$ is presented. The variance of treatment exposures is **0.0243**. The network topology is sourced from the FB-Stanford3 dataset in [51], which represents a Facebook social network comprising $|\mathcal{V}| = 11586$ nodes and $|\mathcal{E}| = 568309$ edges. This network will be used in our simulation study.

Merging Increases the Variation of Exposures

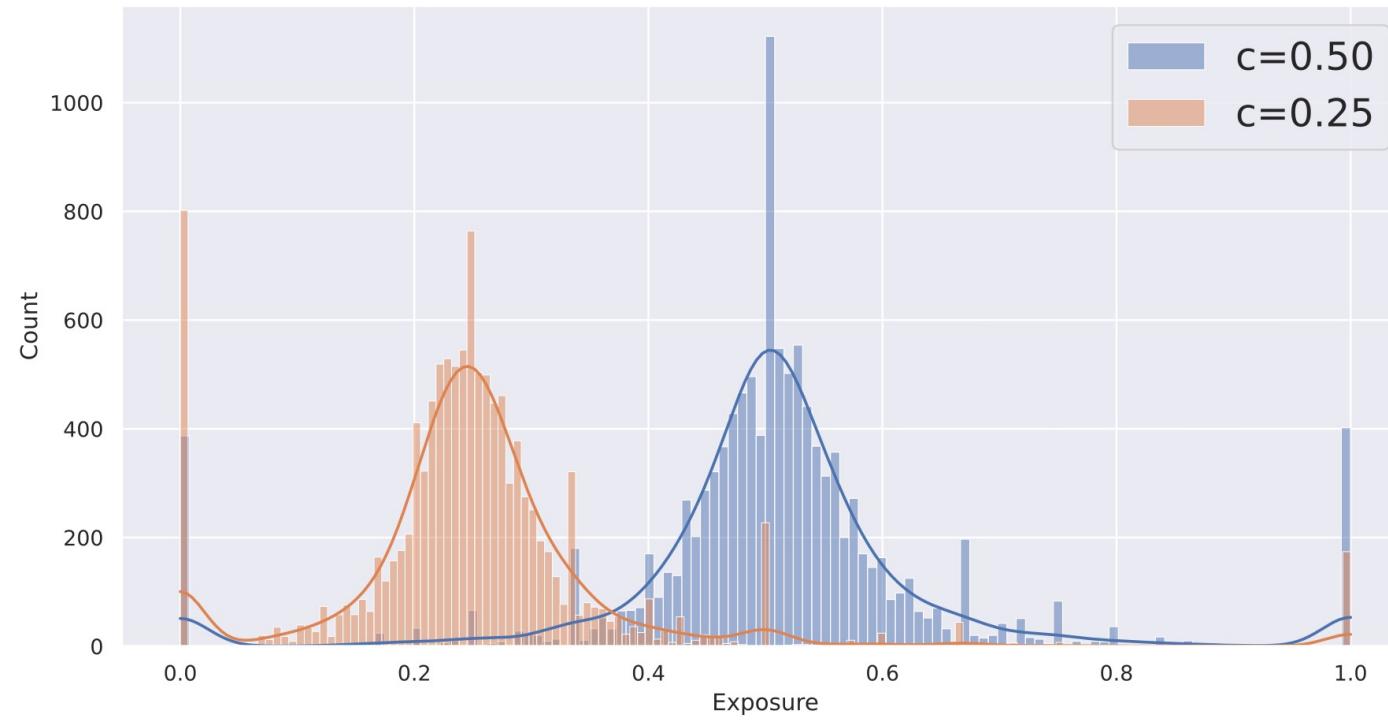
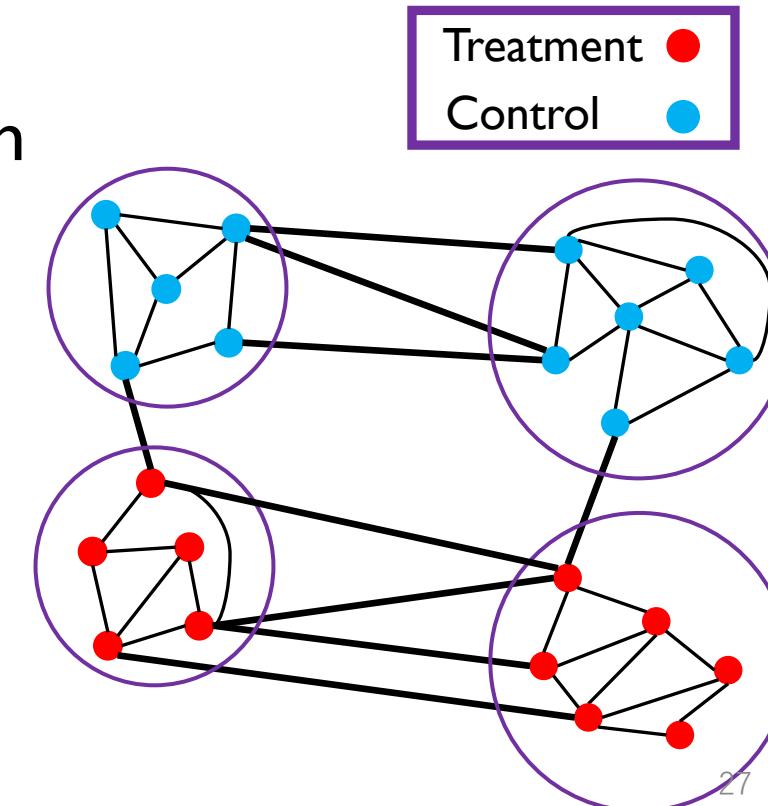


Figure 3: Distributions of treatment exposures under complete randomization with treatment proportion $c = 0.25$ and $c = 0.5$. The variances of treatment exposures are 0.0188 and 0.0243, respectively, with a variance of 0.0377 for the merged data.

Synergy with Cluster-level Randomization

- The well-established methodology for tackling with interference is cluster-level randomization.
- Def. Allocate treatments at cluster-level, which makes units within the same cluster share the treatment level.
- Our new idea: it introduces strong **correlations among treatments** of units and increases the variation of exposures.



Synergy with Cluster-level Randomization

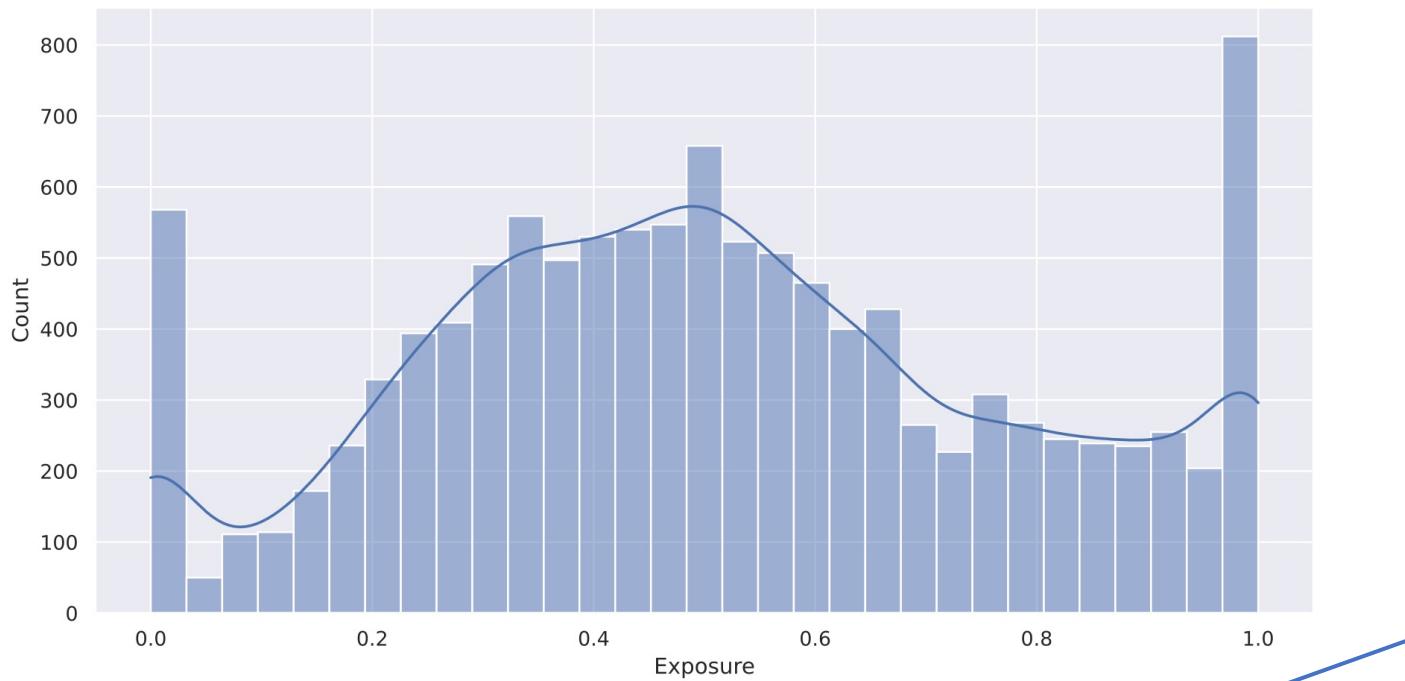
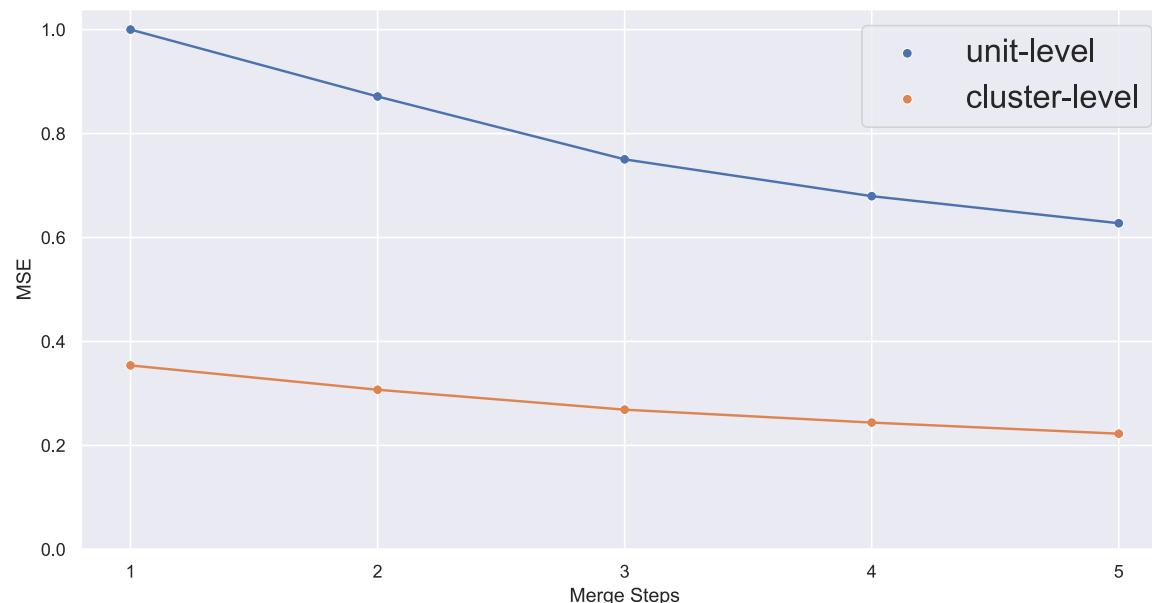
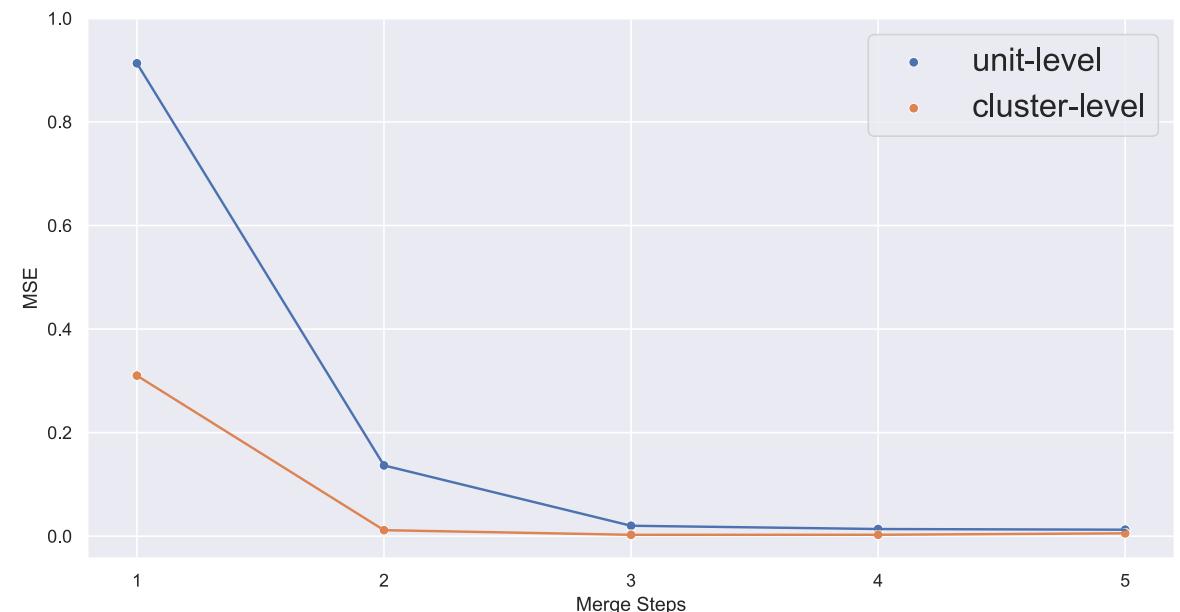


Figure 4: Distribution of treatment exposures under cluster-level complete randomization with treatment proportion $c = 0.5$. The variance of treatment exposures is **0.0712**.

Synergy with Cluster-level Randomization



Linear Regression



Graph Neural Network

Simulation Study TL;DR

- We examine a more refined estimator, graph neural network (GNN) with three layers of graph convolution.
- We further examine the following cases, beyond traditional settings
 - 2-hop interference (beyond 1-hop neighborhood interference)
 - Multiplicative, quadratic, square-root interference (beyond linear interference)
 - Dynamic graph structure (beyond static graph)
- Main takeaway:
 - Our findings **generalize** to GNN-based estimator.
 - In linear case, just merging two steps with lowest and largest proportion.
 - In complex cases, merging more **intermediate** steps can be beneficial.

QR code of paper

Simulation Study I

randomization level	metric	Bias	Std	MSE	Cluster		
					Bias	Std	MSE
#merging rounds	rounds						
	$t = 1$	-0.951	0.071	0.909	-0.561	0.059	0.318
	$t = 2$	-0.369	0.021	0.136	-0.112	0.037	0.014
	$t = 3$	-0.142	0.014	0.020	-0.034	0.044	0.003
	$t = 4$	-0.116	0.023	0.014	-0.030	0.048	0.003
	$t = 5$	-0.110	0.020	0.013	-0.042	0.054	0.005

Performance of GNN estimator with complete randomization and staggered rollout

Merging setting:

$(c_1, c_2, \dots, c_5) = (2\%, 5\%, 10\%, 25\%, 50\%)$. The t -th point means the result with merging the steps (c_{6-t}, \dots, c_5) , namely, we stand at the point of ramp% = 50% and consider merging previous steps.

Simulation Study I

randomization level	level metric	Unit			Cluster		
		Bias	Std	MSE	Bias	Std	MSE
#merging rounds	rounds						
	$t = 1$	-0.951	0.071	0.909	-0.561	0.059	0.318
	$t = 2$	-0.369	0.021	0.136	-0.112	0.037	0.014
	$t = 3$	-0.142	0.014	0.020	-0.034	0.044	0.003
	$t = 4$	-0.116	0.023	0.014	-0.030	0.048	0.003
	$t = 5$	-0.110	0.020	0.013	-0.042	0.054	0.005

Performance of GNN estimator with complete randomization and staggered rollout

Messages:

- Merging remains effective for GNN estimator.
- Cluster-level randomization and merging methodology work **synergistically**.

Simulation Study 2

level metric rounds	Unit			Cluster		
	Bias	Std	MSE	Bias	Std	MSE
$t = 1$	-0.997	0.013	0.994	-0.600	0.018	0.360
$t = 2$	-0.995	0.012	0.990	-0.599	0.018	0.359
$t = 3$	-0.989	0.015	0.978	-0.595	0.020	0.354
$t = 4$	-0.975	0.025	0.952	-0.583	0.026	0.341
$t = 5$	-0.951	0.071	0.909	-0.561	0.059	0.318

Performance of GNN estimator with **repeated** experiments

Messages:

- The benefit is not simply from the increase of data volume.
- One should merge experimental data with the same population and different treatment proportions.

Simulation Study 3

level	metric	Unit			Cluster		
		Bias	Std	MSE	Bias	Std	MSE
rounds							
$t = 1$		-1.401	0.034	1.963	-0.950	0.045	0.904
$t = 2$		-0.611	0.024	0.374	-0.303	0.064	0.096
$t = 3$		-0.316	0.013	0.100	-0.117	0.046	0.016
$t = 4$		-0.159	0.015	0.025	-0.061	0.064	0.008
$t = 5$		-0.160	0.024	0.026	-0.074	0.070	0.010

Performance of GNN estimator with **square-root** interference term

Messages:

- When interference becomes non-linear, merging more intermediate steps can be beneficial.

Simulation Study 4

level metric rounds	Unit			Cluster		
	Bias	Std	MSE	Bias	Std	MSE
$t = 1$	-1.401	0.034	1.963	-0.950	0.045	0.904
$t = 2$	-0.611	0.024	0.374	-0.303	0.064	0.096
$t = 3$	-0.316	0.013	0.100	-0.117	0.046	0.016
$t = 4$	-0.159	0.015	0.025	-0.061	0.064	0.008
$t = 5$	-0.160	0.024	0.026	-0.074	0.070	0.010

Performance of GNN estimator with **multi-hop** interference

Messages:

- Our findings remain valid when it comes to the case of multi-hop interference.

Simulation Study 5

level	metric	Unit			Cluster		
		Bias	Std	MSE	Bias	Std	MSE
rounds							
$t = 1$		-0.666	0.095	0.453	-0.665	0.025	0.443
$t = 2$		-0.150	0.132	0.040	-0.161	0.061	0.030
$t = 3$		-0.106	0.137	0.030	-0.094	0.028	0.010
$t = 4$		-0.060	0.141	0.023	-0.058	0.044	0.005
$t = 5$		-0.045	0.149	0.024	-0.034	0.070	0.006

Performance of GNN estimator with **dynamic graph structure** (preferential attachment)

Messages:

- Our findings remains valid when graph structure is dynamic
- Merging **intermediate steps** are beneficial when graph structure becomes dynamic.

Thanks for Your Attention

Qianyi Chen, Bo Li

Tsinghua University, School of Economics and Management