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Background: A/B Testing on the Network

• A/B test is the gold standard for modern platforms to support data-driven
decision making on launching new product features, e.g., new algorithm/UI.

• Many platforms involve a network structure connecting its users, e.g., social
network (LinkedIn,WeChat), two-sided market (Taobao, eBay).

• We call the network interference exists, when the outcome of certain units
can also be influenced by the treatments allocated to its neighbors.

• Network interference is common in practice of large platforms and
introduce substantial bias that blurs the conclusion of A/B testing. 2



Background: Tackling Network Interference

• Experimental design
• Cluster-level randomization (Hudgens 2008, Ugander 2013)
• Refined covariance design of treatment vector (Candogan 2023, Chen 2023)

• Estimation
• Network-adaptive estimator (Liu 2022&2024, Ugander 2023)
• Counterfactual prediction with regression model (Leung 2024, Wu 2025)

• Our position: data-centric engineering for better regression-based
estimation.
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Ramp-up Process

Ref: SQR: Balancing Speed, Quality and Risk in Online Experiments, KDD 2018

Cumulative distribution of ramp duration, by ramp%

Ramp-up: gradually increasing the 
traffic to experiments. 

- Resource constraint: more than 
2,000 experiments are newly 
launched every week.

- Risk control: many new product 
features are useless or even 
harmful for user experience.
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Basic Setting
• We consider binary treatment vector

• The estimand in the A/B test is global average treatment effect (GATE)

• We consider unit-level complete randomization for analytical tractability

• Ramp-up: multiple experiments with increasing treatment proportions

z = (z1, z2, . . . , zn) ∈ {0, 1}n.

τ :=
1

n

∑

i∈[n]

(Yi(1)− Yi(0))

n∑

i=1

zi = d E [zi] =
d

n

c1 ≤ c2 ≤ · · · ≤ cT ct =
dt

n
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Potential Outcome Model

• To enable exact bias/variance analysis, we need a parametric form of
potential outcomes, which we call general linear interference model

• It allows for general long-distance interference, in contrast to traditional 1-
hop interference. 

• Example: Linear-in-means model (𝐵 = 𝐷!"𝐴 , normalized adjacency)

Y (z) = β0 + β1z+Bz+ ε

Yi(z) = β0 + β1zi + r

∑
j∈N (i) zj

degi
+ ε
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Understand the GATE Estimation

• Estimation of GATE: an extrapolation task
• The available data is only experimental data with small treatment proportions, e.g.,

5%, 10%, etc.
• The target is the mean outcomes under global treatment and global control.

• Estimation strategy
• Macro-level: views the mean outcomes as 1-d function of treatment proportion 𝑝,
𝑀(𝑝). It’s almost impossible to predict 𝑀(1) with 𝑀 0.05 , 𝑀 0.1 .
• Micro-level: the treated neighbors of some units can approach the case of 𝑝 = 1

locally. Our regression are run on the outcomes of units.

7



Regression-based Estimator

• We then formally define the regression-based estimator:
A prediction function 𝑓 that maps the treatment vector 𝑧 and adjacency
matrix 𝐴 into the outcomes of each unit.

• Given this regression function, we give the GATE estimator as the
difference between two predicted mean outcomes:

f : {0, 1}n × A → R
n

τ̂(f) =
1

n
1
!(f(1, A)− f(0, A))
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Preview: Power of Merging

Linear Regression Graph Neural Network

Our methodology: merging experimental data at previous ramp-up steps to train
the regression model, instead of only the current step.
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Preview: Power of Merging

Linear Regression Graph Neural Network

Merging setting: 𝑐!, 𝑐", … , 𝑐# = (2%, 5%, 10%, 25%, 50%).The 𝑡-th point
corresponds to the result with merging the steps (𝑐$%&, … , 𝑐#).
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Preview: Power of Merging

Graph Neural Network

Main messages:
• Bias dominates in this trade-off, even for the complex regression function like GNN.
• Substantial bias reduction is achieved through training regression model on merged data.

Linear Regression
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Linear Regression Estimator

• Why we choose linear regression as starting point
• The empirical risk minimizer admits closed-form.
• The conclusion derived from it can be empirically generalized to other advanced

regression functions, e.g., GNN.

• Linear regression function:

• Here, we do not incorporate network-dependent feature and use OLS

f(z, A) = X(z)θ̂

X(z) = (1, z) θ̂ =
(

X(z)!X(z)
)−1

X(z)!Y
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Further Tractability Issues

• The key for exact analysis of bias/variance lies in resolving the randomness
of design matrix 𝑋(𝒛)

• The matrix 𝑋 𝒛 #𝑋 𝒛
!"

involves a determinant in the denominator,
making the analysis intractable if the determinant det(𝑋$𝑋) is random. 

X
!
X =

(

n z
!
1

z
!
1 ‖z‖22

)

=

(

n d

d d

)

Complete randomization: allocate exact 𝑑 treatments to 𝑛 units
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One-step Experiment
Theorem 1 The bias and variance of the linear regression estimator under
general linear interference are given by:

Bias
(

τ̂(1)

)

= −

(

∑

i,j Bij

)

n

(

1

n(n− 1)
+ 1

)

and

Var
(

τ̂(1)

)

=

(

1

nc(1− c)

)2











∑

i,j

Bij





2
(

c3(c− 1)

n
+O

(

1

n2

))

+





∑

i,j,k

BijBkj





(

c(c− 1)

n
+O

(

1

n2

))

+





∑

i,j,l

BijBil





(

c
3(1− c) +O

(

1

n

))

+





∑

i,j

B
2
ij





(

c
2(1− c) +O

(

1

n

))

+





∑

i,j

BijBji





(

(1− c)2c2 +O

(

1

n

))





−





∑

i,j

Bij





2

1

(n(n− 1))2
+

σ2
e

nc(1− c)

Recall:𝐵!" denotes impact imposed by 𝑗 on 𝑖
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Intensity of Regular Interference
Assumption 1 (Intensity of regular interference) Based on the proposed general
linear interference model, we further assume that for all i ∈ [n]

n
)

j=1

|Bij | = O(1)

Moreover,
)

i,j

Bij = Θ(n)

and
)

j

(

)

i

Bij

)2

= O(n)

15



Intensity of Regular Interference
Assumption 1 (Intensity of regular interference) Based on the proposed general
linear interference model, we further assume that for all i ∈ [n]

n
)

j=1

|Bij | = O(1)

Moreover,
)

i,j

Bij = Θ(n)

and
)

j

(

)

i

Bij

)2

= O(n)

Interference does not overshadow direct effect

Recall:𝐵!" denotes impact imposed by 𝑗 on 𝑖

Bias is considerable (otherwise bias would 
diminish; trivial case)

Limited cumulative influence of opinion leaders



Intensity of Regular Interference

Example: Linear-in-means model

For the instance 𝐵 = 𝐷!"𝐴:
- The first two assumptions always hold.
- The third assumption imposes substantial

restriction on adjacency matrix 𝐴.

A sufficient but not necessary condition:
restricted growth rate (common in literature)
- Star graph ×
- Complete graph √

Assumption 1 (Intensity of regular interference) Based on the proposed general
linear interference model, we further assume that for all i ∈ [n]

n
)

j=1

|Bij | = O(1)

Moreover,
)

i,j

Bij = Θ(n)

and
)

j

(

)

i

Bij

)2

= O(n)

Yi(z) = β0 + β1zi + r

∑
j∈N (i) zj

degi
+ ε
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One-step Experiment

• In the regime of regular interference, we arrange the results and
conclude that the bias is the dominant factor:

Corollary 1 Based on Assumption 1 and Theorem 1, we further conclude that:

Bias
(

τ̂(1)
)

= Θ(1)

Var
(

τ̂(1)
)

= Θ(1/n)
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Two-step Experiment

• What’s new:

• Sample size: 𝑛 → 2𝑛

• Remark: For incorporating temporal interference, just add off-diagonal 
elements into 𝑑𝑖𝑎𝑔(𝐵, 𝐵). Even if the temporal effect exists, we can still
focus on the cross-sectional part by imposing appropriate assumptions.

B
expand

−−−−−→

(

B 0

0 B

)

z
expand

−−−−−→

(

z1

z2

)
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Bias Reduction Brought by Merging
Theorem 2 The bias of the linear regression estimator trained on merged data
( T = 2 ) under general linear interference is given by:

Bias
(

τ̂(2)
)

= −

∑

ij Bij

n

(

1−
(n− 1) (c1 − c2)

2 + 2
(

c21 + c22
)

− 2 (c1 + c2)

(n− 1) (c1 + c2) (2− (c1 + c2))

)

When n > 2
(

c1 + c2 − c21 − c22
)

/ (c1 − c2)
2 + 1, we have:

(n− 1) (c1 − c2)
2 + 2

(

c21 + c22
)

− 2 (c1 + c2)

(n− 1) (c1 + c2) (2− (c1 + c2))
∈ (0, 1)

This directly implies that Bias
(

τ̂(1)
)

and Bias
(

τ̂(2)
)

shares the same sign. A
substantial reduction in the magnitude of bias from τ̂(1) to τ̂(2) is given by:

∣

∣Bias
(

τ̂(1)
)
∣

∣−

∣

∣Bias
(

τ̂(2)
)
∣

∣ =

∣

∣

∣

∑

ij Bij

∣

∣

∣

n

(c1 − c2)
2

(c1 + c2) (2− (c1 + c2))
+O

(

1

n

)
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• Bias reduction:

• Intuition: lower 𝑐" and larger 𝑐+ will bring us closer to the desired 
scenario of global control and global treatment. 

• Given a budget max 𝑐", 𝑐+ ≤ 𝑐, the best we can do: 𝑐" = 0, 𝑐+ = 𝑐

• This is still unsatisfactory, which motivates refined regression functions.

Bias Reduction Brought by Merging

∣

∣Bias
(

τ̂(1)

)
∣

∣

−

∣

∣Bias
(

τ̂(2)

)
∣

∣ =

∣

∣

∣

∑

ij Bij

∣

∣

∣

n

(c1 − c2)
2

(c1 + c2) (2− (c1 + c2))
+O

(

1

n

)

Bias
(

τ̂(2)

)

= −

∑

ij Bij

n

(

1−
c

2− c

)

+O

(

1

n

)
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Bias Reduction Brought by Merging (𝑇-step)

Theorem 3 For linear regression estimator trained on merged T -step data, the
relative bias is given by:

Bias
(

τ̂(T )

)

= −

∑

ij Bij

n






1−

T
∑T

t=1 c
2
t −

(

∑T
t=1 ct

)2

(

∑T
t=1 ct

)(

T −

∑T
t=1 ct

)






+O

(

1

n

)

• Is merging still effective? Yes.
• Does 𝑇-step necessarily bring further bias reduction (v.s. fewer steps)? 

No. It improves only when an experiment with more extreme proportion is 
merged in.
• The benefit of merging 2-step experimental data is intrinsic. 22



• Besides complex cross-units variance, there can also be correlations of 
treatments in the temporal dimension.
• We consider two cases, which is temporally independent experiments and 

staggered rollout experiments (non-decreasing treatments on the fly) 

Variance Remains Negligible

Theorem 4 For the linear regression estimator trained on merged T -step tempo-
rally independent and staggered rollout experimental data, the order of variance
is given by

Var
(

τ̂(T )

)

= Θ

(

1

n

)
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• The network exposure can be viewed as a representation of treatment 
vector in the interference term.

• For the linear-in-means model, the exposure can be specified as:

• We claim that the key challenge in learning the interference effect is 
ensuring sufficient variation in treatment exposures {𝑒,},-". .

Further Intuition:Variation of Exposures

ei =

∑
j∈N (i) zj

degi
Yi(z) = β0 + β1zi + r

∑
j∈N (i) zj

degi
+ ε
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Further Intuition:Variation of Exposures
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Merging Increases theVariation of Exposures
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Synergy with Cluster-level Randomization

• The well-established methodology for tackling with interference is
cluster-level randomization.

• Def.Allocate treatments at cluster-level, which
makes units within the same cluster share
the treatment level.

• Our new idea: it introduces strong
correlations among treatments of units
and increases the variation of exposures.

Treatment
Control
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Synergy with Cluster-level Randomization
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Synergy with Cluster-level Randomization

Linear Regression Graph Neural Network
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Simulation Study TL;DR
• We examine a more refined estimator, graph neural network (GNN) with

three layers of graph convolution.

• We further examine the following cases, beyond traditional settings
• 2-hop interference (beyond 1-hop neighborhood interference)
• Multiplicative, quadratic, square-root interference (beyond linear interference)
• Dynamic graph structure (beyond static graph)

• Main takeaway:
• Our findings generalize to GNN-based estimator.
• In linear case, just merging two steps with lowest and largest proportion.
• In complex cases, merging more intermediate steps can be beneficial.
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Simulation Study 1

Performance of GNN estimator with complete randomization and staggered rollout

Merging setting:
𝑐", 𝑐#, … , 𝑐$ = (2%, 5%, 10%, 25%, 50%).The 𝑡-th point means the result with merging the steps
𝑐%!&, … , 𝑐$ , namely, we stand at the point of ramp%=50% and consider merging previous steps.

randomization level

#merging rounds

level Unit Cluster

metric Bias Std MSE Bias Std MSE

rounds

t = 1 -0.951 0.071 0.909 -0.561 0.059 0.318

t = 2 -0.369 0.021 0.136 -0.112 0.037 0.014

t = 3 -0.142 0.014 0.020 -0.034 0.044 0.003

t = 4 -0.116 0.023 0.014 -0.030 0.048 0.003

t = 5 -0.110 0.020 0.013 -0.042 0.054 0.005
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Simulation Study 1

Performance of GNN estimator with complete randomization and staggered rollout

level Unit Cluster

metric Bias Std MSE Bias Std MSE

rounds

t = 1 -0.951 0.071 0.909 -0.561 0.059 0.318

t = 2 -0.369 0.021 0.136 -0.112 0.037 0.014

t = 3 -0.142 0.014 0.020 -0.034 0.044 0.003

t = 4 -0.116 0.023 0.014 -0.030 0.048 0.003

t = 5 -0.110 0.020 0.013 -0.042 0.054 0.005

randomization level

#merging rounds

32

Messages:
- Merging remains effective for GNN estimator.
- Cluster-level randomization and merging methodology work synergistically.



Simulation Study 2

Performance of GNN estimator with repeated experiments

33

level Unit Cluster

metric Bias Std MSE Bias Std MSE

rounds

t = 1 -0.997 0.013 0.994 -0.600 0.018 0.360

t = 2 -0.995 0.012 0.990 -0.599 0.018 0.359

t = 3 -0.989 0.015 0.978 -0.595 0.020 0.354

t = 4 -0.975 0.025 0.952 -0.583 0.026 0.341

t = 5 -0.951 0.071 0.909 -0.561 0.059 0.318

Messages:
- The benefit is not simply from the increase of data volume.
- One should merge experimental data with the same population and different treatment proportions.



Simulation Study 3

Performance of GNN estimator with square-root interference term

Messages:
- When interference becomes non-linear, merging more intermediate steps can be beneficial.
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level Unit Cluster

metric Bias Std MSE Bias Std MSE

rounds

t = 1 -1.401 0.034 1.963 -0.950 0.045 0.904

t = 2 -0.611 0.024 0.374 -0.303 0.064 0.096

t = 3 -0.316 0.013 0.100 -0.117 0.046 0.016

t = 4 -0.159 0.015 0.025 -0.061 0.064 0.008

t = 5 -0.160 0.024 0.026 -0.074 0.070 0.010



Simulation Study 4

Performance of GNN estimator with multi-hop interference

Messages:
- Our findings remain valid when it comes to the case of multi-hop interference.
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level Unit Cluster

metric Bias Std MSE Bias Std MSE

rounds

t = 1 -1.401 0.034 1.963 -0.950 0.045 0.904

t = 2 -0.611 0.024 0.374 -0.303 0.064 0.096

t = 3 -0.316 0.013 0.100 -0.117 0.046 0.016

t = 4 -0.159 0.015 0.025 -0.061 0.064 0.008

t = 5 -0.160 0.024 0.026 -0.074 0.070 0.010



Simulation Study 5

Performance of GNN estimator with dynamic graph structure (preferential attachment)

Messages:
- Our findings remains valid when graph structure is dynamic
- Merging intermediate steps are beneficial when graph structure becomes dynamic.
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level Unit Cluster

metric Bias Std MSE Bias Std MSE

rounds

t = 1 -0.666 0.095 0.453 -0.665 0.025 0.443

t = 2 -0.150 0.132 0.040 -0.161 0.061 0.030

t = 3 -0.106 0.137 0.030 -0.094 0.028 0.010

t = 4 -0.060 0.141 0.023 -0.058 0.044 0.005

t = 5 -0.045 0.149 0.024 -0.034 0.070 0.006
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