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Background: A/B Testing on the Network

* A/B test is the gold standard for modern platforms to support data-driven
decision making on launching new product features, e.g., new algorithm/UI.

* Many platforms involve a network structure connecting its users, e.g., social
network (Linkedln,WeChat), two-sided market (Taobao, eBay).

* We call the network interference exists, when the outcome of certain units
can also be influenced by the treatments allocated to its neighbors.

* Network interference is common in practice of large platforms and
introduce substantial bias that blurs the conclusion of A/B testing.



Background: Tackling Network Interference

* Experimental design
* Cluster-level randomization (Hudgens 2008, Ugander 201 3)
* Refined covariance design of treatment vector (Candogan 2023, Chen 2023)

* Estimation
* Network-adaptive estimator (Liu 2022&2024, Ugander 2023)

* Counterfactual prediction with regression model (Leung 2024,Wu 2025)

* Our position: data-centric engineering for better regression-based
estimation.



Ramp-up Process
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Ramp-up: gradually increasing the
traffic to experiments.

- Resource constraint: more than
2,000 experiments are newly
launched every week.

- Risk control: many new product
features are useless or even
harmful for user experience.

Cumulative distribution of ramp duration, by ramp%

Ref: SQR: Balancing Speed, Quality and Risk in Online Experiments, KDD 2018



Basic Setting

* We consider binary treatment vector
Z — (Zl, KDy e ooy Zn) S {O, 1}77,

* The estimand in the A/B test is global average treatment effect (GATE)

== 3 (Y1) - %i(0))

n
i€[n]

* We consider unit-level complete randomization for analytical tractability

- d

1=1

* Ramp-up: multiple experiments with increasing treatment proportions

dy
c1<cp<---<cr =



Potential Outcome Model

* To enable exact bias/variance analysis, we need a parametric form of
potential outcomes, which we call general linear interference model

Y(z) =00+ 612+ Bz + ¢

* It allows for general long-distance interference, in contrast to traditional |-
hop interference.

 Example: Linear-in-means model (B = D™'4, normalized adjacency)

ZjEN(i) ~j
deg,

Yi(z) = 8o+ Brzi + 7 +e



Understand the GATE Estimation

* Estimation of GATE: an extrapolation task

* The available data is only experimental data with small treatment proportions, e.g.,
5%, 10%, etc.

* The target is the mean outcomes under global treatment and global control.

* Estimation strategy

* Macro-level: views the mean outcomes as |-d function of treatment proportion p,
M (p). It’s almost impossible to predict M (1) with M(0.05), M(0.1).

* Micro-level: the treated neighbors of some units can approach the case of p = 1
locally. Our regression are run on the outcomes of units.



Regression-based Estimator

* We then formally define the regression-based estimator:
A prediction function f that maps the treatment vector z and adjacency
matrix A into the outcomes of each unit.

f:{0,1}" x &7 — R"

* Given this regression function, we give the GATE estimator as the
difference between two predicted mean outcomes:

) = 1T (/(1,4) - £(0, 4)
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Linear Regression Graph Neural Network

Our methodology: merging experimental data at previous ramp-up steps to train
the regression model, instead of only the current step.
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Merging setting: (¢1, C3, ..., C5) = (2%, 5%, 10%, 25%), 50%).The t-th point
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corresponds to the result with merging the steps (c4_¢, ..., Cg).
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|Bias|

1.00 -

0.95 -

0.90 -

0.85 -

0.80 -

0.75 -

Preview: Power of Merging

-0.0036

—— bias
— std
0.8-
- 0.0034
-0.0030 04-
-0.0026 0.0-
T (merge rounds) T (merge rounds)
Linear Regression Graph Neural Network

Main messages:
* Bias dominates in this trade-off, even for the complex regression function like GNN.

* Substantial bias reduction is achieved through training regression model on merged data.
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Linear Regression Estimator

* Why we choose linear regression as starting point
* The empirical risk minimizer admits closed-form.

* The conclusion derived from it can be empirically generalized to other advanced
regression functions, e.g., GNN.

* Linear regression function:
f(z, A) = X (z)0

* Here, we do not incorporate network-dependent feature and use OLS

X(z)=(1,2) 0= (X2 X(2) X(z)Y



Further Tractability Issues

* The key for exact analysis of bias/variance lies in resolving the randomness
of design matrix X(z)

~1
* The matrix (X(Z)TX(Z)) involves a determinant in the denominator,
making the analysis intractable if the determinant det(X”X) is random.

§
Tv n z1Y\ [(n d
XX—<ZT1 qug)—(d d)

Complete randomization: allocate exact d treatments to n units



One-step Experiment

Theorem 1 The bias and variance of the linear regression estimator under
general linear interference are given by:

Bias (1)) = — Zz,;BZJ> (n(nl_ ot 1) Recall: B;; denotes impact imposed by j on i
and
vt~ (i) [ (S) (252 0())+ (gmam) (<520 ()
(;Bw&l) ( ‘1-¢)+0 (i)) + (;ij) ( (1-¢)+0 (n)>




Intensity of Regular Interference

Assumption 1 (Intensity of regular interference) Based on the proposed general
linear interference model, we further assume that for all © € n]

> |Bij| = 0(1)
j=1
Moreover,
Y Bi; =06(n)
@]
and
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Intensity of Regular Interference

Assumption 1 (Intensity of regular interference) Based on the proposed general
linear interference model, we further assume that for all © € n]

Z ’Bw’ =0(1)

'\

ZBU = O(n)

T Bias is considerable (otherwise bias would
and diminish; trivial case)

2 (xn) o

Limited cumulative influence of opinion leaders

Recall: B;; denotes impact imposed by j on i

Interference does not overshadow direct effect

Moreover,



Intensity of Regular Interference

Assumption 1 (Intensity of regular interference) Based on the proposed general
linear interference model, we further assume that for all i € [n]

Example: Linear-in-means model

;|Bw|—0(1> E(Z):ﬁo-i-ﬁﬂi-l-?“z:j%gt)zj-l-E
Moreover, For the instance B = D™ 1A4:

ZBZ-J- = O(n) - The first two assumptions always hold.

0.J - The third assumption imposes substantial
and restriction on adjacency matrix A.

2
Y (D_Bi| =0 - »
—~\5 A sufficient but not necessary condition:
restricted growth rate (common in literature)
- Star graph x

- Complete graph



One-step Experiment

* In the regime of regular interference, we arrange the results and
conclude that the bias is the dominant factor:

Corollary 1 Based on Assumption 1 and Theorem 1, we further conclude that:

Bias (7A'(1)) — @(1)
Var (7(1)) = ©(1/n)



Two-step Experiment

* What’s new:

* Sample size:n — 2n

* Remark: For incorporating temporal interference, just add off-diagonal
elements into diag (B, B). Even if the temporal effect exists, we can still
focus on the cross-sectional part by imposing appropriate assumptions.



Bias Reduction Brought by Merging

Theorem 2 The bias of the linear regression estimator trained on merged data
(T =2 ) under general linear interference is given by:

oy i B (n—1)(c1 — c3)” +2 (cf +c3) —2(c1+ o)
Blas (7)) = == (1 T Dt @ () )

Whenn > 2 (c1+co—ci —c3) /(a1 — ) + 1, we have:

(n—1)(c; — 62)2 +2(cf+c3) —2(c1 + c2)
(n—=1) (c1 +¢2) (2= (c1 + ¢2))

€ (0,1)

This directly tmplies that Bias (%(1)) and Bias (%(2)) shares the same sign. A
substantial reduction in the magnitude of bias from 71y to T(2y is given by:

|Z“J (c1 — c2)°

1
|Bias (7(1))| — [Bias (72))| R FArY B Y +O<E>
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Bias Reduction Brought by Merging

* Bias reduction:

. A . R Zij Bij (01 — 02)2 1
‘BlaS (7‘(1)” — }BlaS (7’(2))‘ = n (Cl 1 02) (2 — (Cl T C2)) + O (g)

* Intuition: lower ¢; and larger ¢, will bring us closer to the desired
scenario of global control and global treatment.

* Given a budget max{c,, c,} < c, the best we can do:c; = 0,c, =

. R ZZB’L C 1
Blas (7)) = == J<1_2—c>+0(ﬁ>

* This is still unsatisfactory, which motivates refined regression functions.




Bias Reduction Brought by Merging (T -step)

Theorem 3 For linear regression estimator trained on merged 1'-step data, the
relative bias is given by:

L B D _ij Bij TZtT:1 c; — (Zle Ct>2 1
e (1 C(She) (oL ct)> ~o(3)

* Is merging still effective? Yes.

* Does T-step necessarily bring further bias reduction (v.s. fewer steps)?
No. It improves only when an experiment with more extreme proportion is

merged in.

* The benefit of merging 2-step experimental data is intrinsic. .



Variance Remains Negligible

* Besides complex cross-units variance, there can also be correlations of
treatments in the temporal dimension.

* We consider two cases, which is temporally independent experiments and
staggered rollout experiments (non-decreasing treatments on the fly)

Theorem 4 For the linear regression estimator trained on merged T'-step tempo-
rally independent and staggered rollout experimental data, the order of variance

1S given by
1
Var (72(T)) = 0 (—)

n

23



Further Intuition:Variation of Exposures

* The network exposure can be viewed as a representation of treatment
vector in the interference term.

* For the linear-in-means model, the exposure can be specified as:

Vilg) = fo + fros 4 r BN L N ) %
deg; deg,

* We claim that the key challenge in learning the interference effect is
ensuring sufficient variation in treatment exposures {e;}:- .



Further Intuition:Variation of Exposures
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Figure 2: The distribution of treatment exposures under complete randomiZation with a treatment
proportion of ¢ = 0.5 is presented. The variance of treatment exposures is|0.0243.| The network topology
is sourced from the FB-Stanford3 dataset in [51], which represents a Facebook social network comprising
|V| = 11586 nodes and |€| = 568309 edges. This network will be used in our simulation study.




Merging Increases the Variation of Exposures
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Figure 3: Distributions of treatment exposures under complete randomization with treatment proportion

c = 0.25 and\c = 0.5. The variances of treatment exposures are 0.0188 and 0.0243, respectively, with a
variance of |0.0377|for the merged data.




Synergy with Cluster-level Randomization

* The well-established methodology for tackling with interference is
cluster-level randomization.

Treatment @

* Def. Allocate treatments at cluster-level, which Control @

makes units within the same cluster share
the treatment level.

* Our new idea: it introduces strong
correlations among treatments of units 7
and increases the variation of exposures.




Synergy with Cluster-level Randomization
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Figure 4: Distribution of treatment exposures under cluster-level comp
proportion ¢ = 0.5. The variance of treatment exposures is

et€ randomization with treatment
0.0712
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Synergy with Cluster-level Randomization

1.0
1.0 . -
o unit-level 3 unit-level
cluster-level o5 cluster-level
08 '
0.6
6
10}
(2]
=

eeeeeeeeee

Linear Regression Graph Neural Network



Simulation Study TL;DR

* We examine a more refined estimator, graph neural network (GNN) with
three layers of graph convolution.

* We further examine the following cases, beyond traditional settings
* 2-hop interference (beyond |-hop neighborhood interference)
* Multiplicative, quadratic, square-root interference (beyond linear interference)
* Dynamic graph structure (beyond static graph)

. QR code of paper
* Main takeaway:

* Our findings generalize to GNN-based estimator.




Simulation Study |

randomization level ——level Unit Cluster
metric Bias Std  MSE Bias Std  MSE

#merging rounds ———rounds
t=1 -0.951 0.071 0.909 -0.561 0.059 0.318
t =2 -0.369 0.021 0.136 -0.112 0.037 0.014
t=3 -0.142 0.014 0.020 -0.034 0.044 0.003
t=4 -0.116 0.023 0.014 -0.030 0.048 0.003
t=2>5 -0.110 0.020 0.013 -0.042 0.054 0.005

Performance of GNN estimator with complete randomization and staggered rollout

Merging setting:
(c1,C2, .., €5) = (2%, 5%, 10%, 25%, 50%).The t-th point means the result with merging the steps
(cg—¢, ---» C5), namely, we stand at the point of ramp%=50% and consider merging previous steps.



Simulation Study |

randomization level ——level Unit Cluster
metric Bias Std  MSE Bias Std  MSE

#merging rounds ———rounds
t=1 -0.951 0.071 0.909 -0.561 0.059 0.318
t =2 -0.369 0.021 0.136 -0.112 0.037 0.014
t=3 -0.142 0.014 0.020 -0.034 0.044 0.003
t=4 -0.116  0.023 0.014 -0.030 0.048 0.003
t=2>5 -0.110 0.020 0.013 -0.042 0.054 0.005

Performance of GNN estimator with complete randomization and staggered rollout

Messages:
- Merging remains effective for GNN estimator.
- Cluster-level randomization and merging methodology work synergistically.



Simulation Study 2

level Unit Cluster
metric Bias Std MSE Bias Std  MSE
rounds

t=1 -0.997 0.013 0.994 -0.600 0.018 0.360
t =2 -0.995 0.012 0.990 -0.599 0.018 0.359
t=3 -0.989 0.015 0.978 -0.595 0.020 0.354
t=4 -0.975 0.025 0.952 -0.583 0.026 0.341
t=2>5 -0.951 0.071 0.909 -0.561 0.059 0.318

Performance of GNN estimator with repeated experiments

Messages:
- The benéfit is not simply from the increase of data volume.
- One should merge experimental data with the same population and different treatment proportions.



Simulation Study 3

level Unit Cluster
metric Bias Std MSE Bias Std  MSE
rounds

t=1 -1.401 0.034 1.963 -0.950 0.045 0.904
t =2 -0.611 0.024 0.374 -0.303 0.064 0.096
t=3 -0.316 0.013 0.100 -0.117 0.046 0.016
t=4 -0.159 0.015 0.025 -0.061 0.064 0.008
t=2>5 -0.160 0.024 0.026 -0.074 0.070 0.010

Performance of GNN estimator with square-root interference term

Messages:
- When interference becomes non-linear, merging more intermediate steps can be beneficial.



Simulation Study 4

level Unit Cluster
metric Bias Std MSE Bias Std  MSE
rounds

t=1 -1.401 0.034 1.963 -0.950 0.045 0.904
t =2 -0.611 0.024 0.374 -0.303 0.064 0.096
t=3 -0.316 0.013 0.100 -0.117 0.046 0.016
t=4 -0.159 0.015 0.025 -0.061 0.064 0.008
t=2>5 -0.160 0.024 0.026 -0.074 0.070 0.010

Performance of GNN estimator with multi-hop interference

Messages:
Our findings remain valid when it comes to the case of multi-hop interference.



Simulation Study 5

level Unit Cluster
metric Bias Std MSE Bias Std  MSE
rounds

t=1 -0.666 0.095 0.453 -0.665 0.025 0.443
t =2 -0.150 0.132 0.040 -0.161 0.061 0.030
t=3 -0.106 0.137 0.030 -0.094 0.028 0.010
t=4 -0.060 0.141 0.023 -0.058 0.044 0.005
t=2>5 -0.045 0.149 0.024 -0.034 0.070 0.006

Performance of GNN estimator with dynamic graph structure (preferential attachment)

Messages:
- Our findings remains valid when graph structure is dynamic
- Merging intermediate steps are beneficial when graph structure becomes dynamic.
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