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Machine Learning for Decision-Making

2

There are a variety of applications of machine learning used for decision-
making, where users interact with the model with decisions of the ML model.

Route Suggestion
Ads/Coupon
Pricing
College Admission

We call predictions performative when they impact the population they aim 
to predict. 

Model

Decision

Users

Data



Strategic Behavior: Faking
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Example 1 (Loan application) 
- Bank provides loan to applicants constantly 

according to its policy.
- There is crowdsource effort provides

reverse-engineering of policy.
- Applicants will refer to such third-party 

organization to decide how to falsify the 
application materials, e.g. falsely report the 
debt.

- The target is learning a policy that’s robust to 
such faking behavior.



Strategic Behavior: Improving
Example 2 (Loan application) 
- …
- Applicants will refer to such third-party organization to decide the 

scheme of background improvement (e.g. sell the high-risk assets; 
improve liquidity) to uplift the probability of receiving the loan.

- In this context, we believe the authenticity of submitted materials. 
(Given a powerful checking system, we are free from falsifying.)

- The target here is learning a policy that incentivizing improvement. 
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Extend the Example: Impact of Prediction

Example 2 (Loan application) 
- Bank may predict whether certain applicant will finally default, and 

charge higher interest rate for those applicants with higher default risk.
- Such high interest rate will increase the probability of default in turn.

A natural question is that how to model and tackle with such response 
mechanism of user?
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Strategic Classification and
Performative Prediction
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Strategic Agents Respond to Prediction
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• Example of strategic classification: microfoundation of every agent

• Distribution 𝐷(𝑓!) comes from strategic behavior
of individuals trying to adapt to decision rule.

x(θ) = argmax
x

γfθ(x)− cost (x0, x)

Reward: probability of being classified to
positive label

Cost: feature manipulation



Latent Assumptions on Former Example
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• Rethink the strategic classification

• Parametric utility function: how can we know the manipulation cost?
• Homogeneous feature manipulation cost: individual heterogeneity?
• …

x(θ) = argmax
x

γfθ(x)− cost (x0, x)

Reward of classified to positive label Cost of feature manipulation



Performative Prediction: Distributional Perspective
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• Alternatively, performative prediction targets model the distribution
shift induced by deployed model.

• Turn to consider the influence of predictive model 𝑓! on the whole 
data distribution 𝐷, which induces the distribution map 𝐷(𝜃).
• Example:

• Distribution 𝐷(𝜃) also comes from strategic behavior of individuals 
trying to adapt to decision rule.

D(θ) = N (f(θ),Σ)



Framework of Performative Prediction

• Risk in supervised learning:

• Performative risk:

• Performative optimality: 

• Performative stability:  

10

Risk(θ, D) = Ez∼D["(z; θ)]

PR(θ) = Risk(θ, D(θ))

θPO ∈ argminθ PR(θ)

θPS ∈ argminθ Risk (θ, D (θPS))



Framework of Performative Prediction

• Performative optimality (minimizer of performative risk)

• Performative stability (fixed point)

• Two concepts of solutions
• Performative optimality: minimizing the risk after model deployment
• Performative stability: a natural equilibrium notion
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θPO ∈ argminθ PR(θ)

θPS ∈ argminθ Risk (θ, D (θPS))



Retraining for Performative Stability

• Performative stability:

• We can reach such fixed point by repeated retraining.

• Repeated (empirical) risk minimization guarantees the convergence to 
stable points.

• But what we really want is performative optimality.
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θPS ∈ argminθ Risk (θ, D (θPS))



Gap between PS/PO Solutions Can be Large 

• Here, we present a classic 
example (Miller et al. 2021) to 
show that the gap between PS 
and PO solution can be 
arbitrarily large, and PS solution 
is very bad.
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Targeting Performative Optimality

• Performative optimality

• The insight of repeated retrain is aware of existence of performativity,
but doesn’t model the performativity, which make it unable to break
the echo chamber.

• The distance between PO and PS solution can be arbitrarily large.
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θPO ∈ argminθ Risk (θ, D (θ))



Bandit Exploration

• An immediate way is Bandit-style exploration:
• We deploy a model with parameter 𝜃!
• Collect samples and calculate a performative risk 𝑃𝑅(𝜃!)
• Zero-order optimization/ bandit algorithm (e.g. zooming) is implemented to

decide 𝜃!"#

• However, zero-order optimization is too inefficient for high-dimensional
model parameter 𝜃. (Imagine zero-order search with 1,000 dimensions)
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Parametric Performative Gradient

• Another way to pursue performative optimality is parametric
assumptions on data distribution.
• The reaction of data distribution is summarized into reaction of

parameter of such distribution.

• For example, if we assume the data subjects to Gaussian distribution,
then we can assume that the distribution map (data distribution after
the deployment of model with parameter 𝜃) is:
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D(θ) = N (µ(θ),Σ)



Parametric Performative Gradient

• Then we can construct the performative gradient

• Then we can learn/estimate 𝜇(𝜃) to plug-in the gradient w.r.t. 𝜃.

• Cons of such way:
• Restricted to parametric assumption on distribution
• Low sample efficiency (since the response of model deployment is still

summarized as statistics, such as mean vector in this example)
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D(θ) = N (µ(θ),Σ)θPO ∈ argminθ Risk (θ, D (θ))



From Bandit Feedback to Batch Feedback

• Both former methods compress the responses into one feedback, i.e. 
a performative risk/ a parameter estimate. We call this bandit feedback.
• However, we actually collect a batch of data points in each round.

• Our idea: exploiting every data point, combining the micro-level response 
mechanism.

• To utilize every data point, we choose to learn the post-manipulation 
feature distribution given the information a specific agent would use.

18



Make Performative Learning 
Practical
Augment Performative Learning with micro-level behavior learning 
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Beyond Prediction: Policy is What We Want
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• From the angle of bank, we actually want a policy on loan assignment, 
and binary label is only intermediate results.

• In the literature of classical policy learning in causal inference, we 
usually want to maximize the policy value (binary treatment).

• Optimal policy: treat user with positive CATE 𝜏 𝑥

π(a | x) = P(Take action a | Context x)

π
∗ = argmax

π

∫
π(x)E [Yi(1)− Yi(0) | Xi = x] dF (x)

π
∗(x) = 1 (τ(x) > 0)



Beyond Prediction: Policy is What We Want
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• New policy value: distribution shift induced by strategic agent

• What’s the optimal policy now?

• Munro 2025 analyze the structure of optimal policy through 
directional derivative of 𝑉" 𝜋 in 𝜋 through functional analysis, and
main result there is that cutoff rule isn’t optimal anymore.
• We need a random policy to counter strategic agents.

V
′(π) =

∫
π(x)E [Yi(1)− Yi(0) | X

π

i = x] dFπ(x)

Covariates shiftCATE changed



Event Flow

We consider following event flow for period 𝑡 = 1,2, … , 𝑇
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CATE and Policy Value

• We define the conditional average treatment effect (CATE) here as 
the expected difference between treated and controlled outcomes 
for an individual given its submitted covariate 𝑥.

• The policy value in this setting can be written as
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τ(x) = E [Yi(1)− Yi(0) | X
π

i = x]

V (πθ) =

∫
πθ(x)τ(x)p (x;πθ) dx

= Ex∼p(·;πθ) [πθ(x)τ(x)]



Model 𝜋! as Intervention on Distribution

• One of main conceptual contributions of our work is clarifying the 
treatment: it’s the model 𝜋! , instead of the parameter 𝜃. 

• The notation of distribution map 𝐷(𝜃) is somewhat misleading since 
it ignores the function form 𝜋.

• To illustrate it, we can breezily imagine that how can the parameter of 
a neural network own causal power on data distribution, separate 
from its architecture (functional form)?
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Model 𝜋! as Intervention on Distribution

• However, such clarification brings a new challenge:
The gradient now changes into the probability density function with 
regard to prediction/decision function, i.e. function-to-function gradient.
• To see this, we check the performative gradient:

• The left problem is simplifying such scenario with practical assumptions.
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∇θV (πθ) = Ex∼p(·;πθ)[∇θπθ(x)τ(x) + πθ(x)τ(x)∇θ log p(x;πθ)]

The core term.



Bounded Rationality

• To touch the practical scenario, let’s revisit the decision process in 
strategic classification:

• If 𝑓! is a complex function in practice, and 𝑥 is high-dimensional, an 
individual is probably unable to implement such a complex optimization.
• What agent can do? We believe that an agent can only implement the 

optimization: Selecting the maximum among finite numbers!
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x(θ) = argmax
x

γfθ(x)− cost (x0, x)

Reward of classified to positive label Cost of feature manipulation



Limited Manipulation

• Hence, we consider following scenario: there is high-dimensional 
feature 𝑥, but only a finite discrete type 𝑢 can be manipulated 
(improved) by agents.

• We split the feature 𝑥 into manipulatable feature 𝑢 and fixed feature v. 

• This split not only practical but also benefit us greatly in characterizing 
the impact of deployed policy.
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Further Motivating Limited Manipulation

Example 3 (College Admission) 
- College reveals part of their policies, e.g. higher weight on the

language grades,TOEFL/GRE
- Student is informed of that at Junior year, and most of their features

are fixed in the application year, e.g. school, major, demographics,
grades in first two years, etc.

- The precondition is that college owns mechanism to guarantee the
authenticity of submitted materials.
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Traditional Perspective: 𝜃 as intervention
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u

v

θ u
′

Y



Our Perspective: 𝜋! as intervention

u

v

πθ u
′

Y
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Abstract from Microfoundation

• We only keep the information structure in the classic strategic
classification:

• The information about 𝜋! used by agent with covariate (𝑢, 𝑣) is only the
𝜋!(𝑢", 𝑣) for all possible 𝑢" (he manipulates from 𝑢 to 𝑢").

• We summarize the used information as:
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x(θ) = argmax
x

πθ(x)− cost (x0, x)

Reward of classified to positive label Cost of feature manipulation

[πθ(u, v)]u∈U



Encapsulate the Impact of Policy
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u

v

πθ u
′

Y[πθ((w, v))]w∈U



Encapsulate Impact with Evaluation Vector
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• Based on the this causal mechanism, we derive

• Hence, we can derive following performative gradient

∇θ log p (xi;πθ) = ∇θ log p
(

ui | [πθ ((u, vi))]u∈U

)

p(xi;πθ) = p(ui|vi,πθ)p(vi|πθ)

= p(ui|vi,πθ)p(vi) (πθ only influence ui)

= p(ui|vi, [πθ((u, vi))]u∈U )p(vi) (πθ is summarized as evaluations)

= p(ui|[πθ((u, vi))]u∈U )p(vi) (conditional independence)



Behavior Model
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• We use another neural network to model such conditional
distribution, which actually characterizes the response pattern of
agent reaction:

• For training this conditional mass function, we utilize the reported 
covariate 𝑋# as the supervision to implement classification at each 
epoch, corresponding to the currently released policy network 𝜋!! .

• Neural network and Gaussian process classifier are both qualified.

q
(

ui | [πθ ((u, vi))]u∈U

)



Strategic Policy Gradient 
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• The policy gradient in general form is 

• Through macro-level feature space exploitation and micro-level 
behavior model, we can approximate such gradient by

∇θV (πθ) = Ex∼p(·;πθ) [∇θπθ(x)τ(x)

+πθ(x)τ(x)∇θ log p (x;πθ)]

ĝ = ∇θV̂ (πθ) =
1

n

n
∑

i=1

[∇θπθ (xi) τ̂ (xi)

+πθ (xi) τ̂ (xi)∇θ log
(

q
(

ui | [πθ ((u, vi))]u∈U

))]



Algorithm: Strategic Policy Gradient
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Warmup stage, we implement repeated retraining. 
Guarantee stable performance and collect data.

Train the behavior model after warmup stage.

Apply the approximated performative gradient.



Convergence Guarantee
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• Before introducing the theoretical result, we first provide some facts:
• Convergence to the performative optimal solution is extremely hard. 
• Convergence guarantees in pursuit of performative optimal solution are often 

built for achieving local minima of performative risk.
• There are usually sacrifice in algorithm for building such a guarantee, e.g., 

adopting finite difference method to construct gradient estimate, which scales
poorly.

• In this paper, we build a convergence guarantee through realizability in 
Reproducing Kernel Hilbert Space (RKHS) and do not distort our 
algorithm for theoretical result.



Convergence Guarantee
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Convergence Guarantee
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Insight: Do not Fully Personalize
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• Given some weak regular assumptions on the microfoundation of agent, we
can prove that:
• If we release a piecewise constant policy with knots 𝑎!, … 𝑎", then all 

agents that decide to manipulate their feature will move to these knots.

• This means: we can incentivize discretized through deploying a partially
personalized policy

• If principal do not extremely scheme and intrigue with agent, then 
performative learning would become practically feasible.



Simulation Study
High-dimensional data and policy function
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Synthetic Experiment: 3 Baselines
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1. Cutoff Policy, which only assigns treatments to those agents with positive 
CATE. It’s optimal without strategic behavior. Allocates treatment to all 
agents with positive CATE.

2. Vanilla Policy Gradient, which ignores the impact of policy on data 
distribution, and updates the model parameters with gradient w.r.t. CATE 
only.

3. End2end Policy Gradient, which models 𝑝(𝑢 | 𝑣, 𝜋#) with 𝑝(𝑢 | 𝑣, 𝜃). We 
construct this baseline method to demonstrate the benefit of taking 𝑓#
as intervention instead of 𝜃.



Synthetic Experiment: Data Geneartion
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• We construct fixed feature 𝑣 from 20 dimensional standard multi-
variate Gaussian distribution, and generate 𝑢 from transformation

• The cardinality of 𝑈 is 5, then we design strategic behavior
• Best response

• Softmax response

• Noisy utility

P(u | v) = Softmax(Wv)

u
′ = argmaxu πθ(u, v)− c |u− u0|

u
′ ∼ Softmax (5× (πθ(u, v)− c |u− u0|))

u
′ = argmaxu πθ(u, v) + επ − c |u− u0|



Part of Result in Synthetic Experiment

44

Traditional cutoff policy is a
performative stable solution

Other baselines can’t break it,
even it’s performativity-aware

Our strategic policy gradient break
it easily with stable convergence

Warmup stage
(first 30 epochs),
all methods are
performativity-agnostic



Manipulation Induced by Policies
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Our method incentivize
much higher proportion of
units to increase their 𝑢.



Performance with Noisy/Softmax Utility
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Our method can easily incorporate other special manipulation mechanisms, beyond the classic best-
response.



Gaussian Process Classifier as Behavior Model
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Any powerful classifier with differentiability w.r.t. its input is qualified to serve as our behavior model.



Coarser Discretization of Manipulatable Feature
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• True levels of 𝑢 are 15 (left) and 50 (right), while we deem it as 2, 3, 4, 5, 10.

The factual number of 𝑢 levels has tiny impact on the performance.The gist lies in the used/deemed levels.



Basic Setting of Semi-synthetic Experiment
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• Scenario: policy learning for lending (loan), 307,508 records

• Fixed feature: loan information (amount, duration, interest rate etc.),
demographics (age, profession, credits, etc.) of loan applicant

• Manipulatable feature: external credit score

• Outcome: amount of interest, with probability of loss of capital
because of default. (𝑌 0 = 0, control indicates rejection)



Result in Semi-synthetic Experiment (c=0.1)
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Warmup stage
(first 50 epochs),
all methods are
performativity-
agnostic



Manipulation Induced by Policies (c=0.1)
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Result in Semi-synthetic Experiment (c=0.2)
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Manipulation Induced by Policies (c=0.2)
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Main Traits of Our Methodology

54

• No parametric assumption on utility or data distribution 

• A new pattern of limited manipulation, in the light of bounded rationality 

• Causal mechanism that supports the 𝜋! acts as intervention (versus 𝜃)

• Use of batch feedback (versus bandit feedback)

• Targeting high-dimensional model parameters and data 
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