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Machine Learning for Decision-Making

There are a variety of applications of machine learning used for decision-
making, where users interact with the model with decisions of the ML model.

fJ Route Suggestion Model
¥ Ads/Coupon

Pricing

© College Admission -

We call predictions performative when they impact the population they aim
to predict.



Strategic Behavior: Faking

Example | (Loan application)
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- The target is learning a policy that’s robust to
such faking behavior.



Strategic Behavior: Improving

Example 2 (Loan application)

- Applicants will refer to such third-party organization to decide the
scheme of background improvement (e.g. sell the high-risk assets;
improve liquidity) to uplift the probability of receiving the loan.

- In this context, we believe the authenticity of submitted materials.
(Given a powerful checking system, we are free from falsifying.)

- The target here is learning a policy that incentivizing improvement.



Extend the Example: Impact of Prediction

Example 2 (Loan application)

- Bank may predict whether certain applicant will finally default, and
charge higher interest rate for those applicants with higher default risk.

- Such high interest rate will increase the probability of default in turn.

A natural question is that how to model and tackle with such response
mechanism of user?



Strategic Classification and
Performative Prediction



Strategic Agents Respond to Prediction

* Example of strategic classification: microfoundation of every agent

x(0) = argmax~y fo(x) — cost (xg, )

xr

Reward: probability of being classified to Cost: feature manipulation
positive label

* Distribution D(fg) comes from strategic behavior
of individuals trying to adapt to decision rule.




Latent Assumptions on Former Example

* Rethink the strategic classification

x(0) = argmax~y fo(x) — cost (xg, )

xr

Reward of classified to positive label Cost of feature manipulation

* Parametric utility function: how can we know the manipulation cost?

* Homogeneous feature manipulation cost: individual heterogeneity!?



Performative Prediction: Distributional Perspective

* Alternatively, performative prediction targets model the distribution
shift induced by deployed model.

* Turn to consider the influence of predictive model fy on the whole
data distribution D, which induces the distribution map D(8).

* Example: D(0) = N(f(0),%)

* Distribution D(0) also comes from strategic behavior of individuals
trying to adapt to decision rule.



Framework of Performative Prediction

* Risk in supervised learning:
Risk(0, D) = E..p|l(z;0)]

* Performative risk:

PR(0) = Risk(8, D(0))
* Performative optimality:

fpo € argming, PR(0)
* Performative stability:

fps € argming Risk (6, D (6pg))



Framework of Performative Prediction

* Performative optimality (minimizer of performative risk)
tpo € argming PR(6)
* Performative stability (fixed point)
fps € argming Risk (6, D (6ps))

* Two concepts of solutions
* Performative optimality: minimizing the risk after model deployment
* Performative stability: a natural equilibrium notion



Retraining for Performative Stability

* Performative stability:
Ops € argming Risk (6, D (6pg))

* We can reach such fixed point by repeated retraining.

* Repeated (empirical) risk minimization guarantees the convergence to
stable points.

* But what we really want is performative optimality.



Gap between PS/PO Solutions Can be Large

Proposition 2.1. For any v, A > 0, there exists a per-

. formative prediction problem where the loss is ~y-strongly
¢ H c I"e, we P resent a CIaSS IC convex in 0, yet the unique stable point Opg maximizes the
example (Mi”el" et a.l 202 I ) to performative risk and PR(0ps) — ming PR(6) > A.
Proof. We prove the proposition by constructing an exam-
S hcd)vl\:/’éh at Ithte gap betbween PS ple. Let z ~ D(6) be a point mass at £6, and define the loss
an Solution Can be to be:
o . Uz;0) = —B- 07 2+ 2|6I13,
arbitrarily large, and PS solution 27
. for some 8 > 0. This loss is 7y-strongly convex and the
IS v r')' bad . distribution map is e-sensitive. A short calculation shows

that the performative risk simplifies to
_ (7 2
PR(9) = (3 —<8) - ll61l3: (1)

For € # ~y/3, there is a unique performatively stable point
at the origin, and if ¢ > % this point is the unique max-
imizer of the performative risk. Moreover, for ¢ > %,
ming PR(0) = (7/2 — €8) - maxgce ||0]|3. Therefore, de-
pending on the radius of ©, the suboptimality gap of fpg
can be arbitrarily large. |



Targeting Performative Optimality

* Performative optimality
0po € argming Risk (6, D (6))

* The insight of repeated retrain is aware of existence of performativity,
but doesn’t model the performativity, which make it unable to break
the echo chamber.

* The distance between PO and PS solution can be arbitrarily large.
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Bandit Exploration

* An immediate way is Bandit-style exploration:
* We deploy a model with parameter 6,
* Collect samples and calculate a performative risk PR(6;)

» Zero-order optimization/ bandit algorithm (e.g. zooming) is implemented to
decide 6;, 1

* However, zero-order optimization is too inefficient for high-dimensional
model parameter 6. (Imagine zero-order search with 1,000 dimensions)



Parametric Performative Gradient

* Another way to pursue performative optimality is parametric
assumptions on data distribution.

* The reaction of data distribution is summarized into reaction of
parameter of such distribution.

* For example, if we assume the data subjects to Gaussian distribution,
then we can assume that the distribution map (data distribution after
the deployment of model with parameter 0) is:

D(0) = N(u(0), %)



Parametric Performative Gradient

* Then we can construct the performative gradient

0po € argming Risk (6, D (0))  D(0) = N (u(0),X)

* Then we can learn/estimate u(0) to plug-in the gradient w.r.t. 6.

* Cons of such way:
* Restricted to parametric assumption on distribution

* Low sample efficiency (since the response of model deployment is still
summarized as statistics, such as mean vector in this example)
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From Bandit Feedback to Batch Feedback

* Both former methods compress the responses into one feedback, i.e.
a performative risk/ a parameter estimate.We call this bandit feedback.

* However, we actually collect a batch of data points in each round.

* Our idea: exploiting every data point, combining the micro-level response
mechanism.

* To utilize every data point, we choose to learn the post-manipulation
feature distribution given the information a specific agent would use.
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Make Performative Learning
Practical



Beyond Prediction: Policy is What We Want

* From the angle of bank, we actually want a policy on loan assignment,
and binary label is only intermediate results.

m(a | ) = P(Take action a | Context x)

* In the literature of classical policy learning in causal inference, we
usually want to maximize the policy value (binary treatment).

™ = arg mgx/w(:z:)E Yi(1) = Y;(0) | X = x| dF(x)

« Optimal policy: treat user with positive CATE 7(x)
7w (x) =1 (7(x) > 0)



Beyond Prediction: Policy is What We Want

* New policy value: distribution shift induced by strategic agent

V/(m) = / r(@)E[Yi(1) — Yi(0) | XT = 2] dF™ (x)

* What’s the optimal policy now? CATE changed Covariates shift

* Munro 2025 analyze the structure of optimal policy through
directional derivative of V' (1) in m through functional analysis, and
main result there is that cutoff rule isn’t optimal anymore.

* We need a random policy to counter strategic agents.



Event Flow

We consider following event flow for period t = 1,2, ..., T

1. Principal releases policy m = my,

2. n new agents arrive, and make decisions on feature manipulation. This generates the post-
manipulation feature X = x; and potential outcomes Y;(1), Y;(0), for i = 1,2, ..., n.

3. Agents report the post-manipulation features.

4. Principal observes the x; and allocate binary treatment Z; with treatment probability my, (z;).
5. Agent i observes the binary treatment Z;.

6. Principal observes the outcome Y;(Z;)

7. Principal updates the parameter 6,
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CATE and Policy Value

* We define the conditional average treatment effect (CATE) here as
the expected difference between treated and controlled outcomes
for an individual given its submitted covariate x.

7(z) = BE[Yi(1) - Yi(0) | X = «]

* The policy value in this setting can be written as

V (mg) = /W@(i’?)T(JJ)P(fU;We)diU
— E:L‘Np(-;we) o ()7 ()]



Model 1y as Intervention on Distribution

* One of main conceptual contributions of our work is clarifying the
treatment: it's the model 774, instead of the parameter 6.

* The notation of distribution map D () is somewhat misleading since
it ignores the function form .

* To illustrate it, we can breezily imagine that how can the parameter of
a neural network own causal power on data distribution, separate
from its architecture (functional form)?



Model 1y as Intervention on Distribution

* However, such clarification brings a new challenge:
The gradient now changes into the probability density function with
regard to prediction/decision function, i.e. function-to-function gradient.

* To see this, we check the performative gradient:
VoV (7o) = Eprp(smg) [Vomo(x)7(x) + mo(2)7(2) Ve log p(a; 7o)

/'

The core term.

* The left problem is simplifying such scenario with practical assumptions.



Bounded Rationality

* To touch the practical scenario, let’s revisit the decision process in

strategic classification:
x(0) = argmax~y fo(x) — cost (xg, )

xr

Reward of classified to positive label Cost of feature manipulation

* If fy is a complex function in practice, and x is high-dimensional, an
individual is probably unable to implement such a complex optimization.

* What agent can do? We believe that an agent can only implement the
optimization: Selecting the maximum among finite numbers!
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Limited Manipulation

* Hence, we consider following scenario: there is high-dimensional
feature x, but only a finite discrete type u can be manipulated
(improved) by agents.

* We split the feature x into manipulatable feature u and fixed feature v.

* This split not only practical but also benefit us greatly in characterizing
the impact of deployed policy.
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Further Motivating Limited Manipulation

Example 3 (College Admission)

- College reveals part of their policies, e.g. higher weight on the
language grades, TOEFL/GRE

- Student is informed of that at Junior year, and most of their features
are fixed in the application year, e.g. school, major, demographics,
grades in first two years, etc.

- The precondition is that college owns mechanism to guarantee the
authenticity of submitted materials.



Traditional Perspective: 8 as intervention




Our Perspective: Ty as intervention




Abstract from Microfoundation

* We only keep the information structure in the classic strategic
classification:

x(0) = argmax 7y (x) — cost (zq, )

_— N

Reward of classified to positive label Cost of feature manipulation

* The information about 4 used by agent with covariate (u, v) is only the
g (u', v) for all possible u’ (he manipulates from u to u').

* We summarize the used information as: |7y (u, v)]uEU



Encapsulate the Impact of Policy




Encapsulate Impact with Evaluation Vector

 Based on the this causal mechanism, we derive

U; Vg, W@)p(vi 779)

i|vi, o) p(v;) (mg only influence u;)

p(ﬂfi;ﬂe)

]
3

S

vy (o ((w, v3)) luew)p(v;)  (mg is summarized as evaluations)

~

(
(
(
(

]
SRS

wi| 7o ((w, v:))wew ) (Vi) (conditional independence)
* Hence, we can derive following performative gradient

Vologp (z:;m9) = Vologp (ui | [mo ((w,v:))] yers)



Behavior Model

* We use another neural network to model such conditional
distribution, which actually characterizes the response pattern of
agent reaction:

q (ui | [mo ((,0:)]yers)

* For training this conditional mass function, we utilize the reported
covariate X; as the supervision to implement classification at each

epoch, corresponding to the currently released policy network 1y,

* Neural network and Gaussian process classifier are both qualified.



Strategic Policy Gradient

* The policy gradient in general form is

VQV (7‘&'9) — Epr(.;we) [V@ﬂ'@ (33)7'(%)
+mg(x)T(x)Vglogp (z; )]

* Through macro-level feature space exploitation and micro-level
behavior model, we can approximate such gradient by
, A BN :
§=VoV (mg) = = Y [Vemg () 7 ()

n -
1=1

+7p (Q;Z) T (ajz) Vo log (q (Uz ’ [779 ((ua v%))]uEL{))]



Algorithm: Strategic Policy Gradient

Algorithm 1 Strategic Policy Gradient

: Input: Time horizon 7', warm up rounds 7y, learning rate 71, 72
// Warm up stage, update 6; with vanilla gradient

for t =1 to Ty do Warmup stage, we implement repeated retraining.

Deploy policy g G
t uarantee stable performance and collect data.
Dy  {(ws, 4, Vi), [0, (16, 06) s Vs P
Update CATE estimator 7
Opp1 O + 1 > iy Vomg, () 7(x4)
end for
// Merge data collected in warm-up stage
T . .
Dyarm < {Di};2, Train the behavior model after warmup stage.
: Train hy on Dyarm
. // Update 6; with full gradient
:fort=Tp+1toT do
Deploy policy e, Apply the approximated performative gradient.
Or+1 < 0r + 120+
. end for

I




Convergence Guarantee

* Before introducing the theoretical result, we first provide some facts:
* Convergence to the performative optimal solution is extremely hard.

* Convergence guarantees in pursuit of performative optimal solution are often
built for achieving local minima of performative risk.

* There are usually sacrifice in algorithm for building such a guarantee, e.g.,
adopting finite difference method to construct gradient estimate, which scales
poorly.

* In this paper, we build a convergence guarantee through realizability in
Reproducing Kernel Hilbert Space (RKHS) and do not distort our
algorithm for theoretical result.



Convergence Guarantee

Assumption 4 (Technical assumptions for convergence).

1.

2.

N

NS &

The kernel gradient is uniformly bounded. max ||V¢, K((,)|,, < Gk

The feature map of RKHS is uniformly bounded. ||¢(¢)||lx < R.

The probability mass function of performative distribution is uniformly lower bounded. There
exists t >0 s.t. p(u| ) >t and q(u| () > .

The true performative gradient is uniformly bounded. ||V¢p(u | )| < G,.
The gradient of policy function is bounded. ||Vgmo(z)|| < G.
The CATE is bounded. |T(x)| < B;.

The estimation error of CATE converges in expectation over the distribution Dy. |Ex~p,[T(X) —
X)) < €.

The performative policy value V (my) is l-smooth in 0 and concave in 6.
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Convergence Guarantee

Theorem 1 (Convergence of strategic policy gradient). With learning rate n < %, we have the iterates
of true performative gradient satisfying:

2 2 In? ~2 ln252 log(1/61)

. 2B, + |l —n|GvGg + “L-G% + -

min_||VeVi|? < T | | 7 L 2 (11)
(S 1)

holds with probability 1 —Td162. Here, k is a constant from concentration inequality. € is the estimation
error E[|lq(u | ¢) — p(u | {)|], which satisfies:

e =0 (074 (VlIplln/e + /108 (1/32)) ) (12)

Moreover,

GpGrr/
Gy = G.B; + BTP—Wl (13)

L
and

L2

Gg = ¢,G, (1+ ij\/?jl) t€B, (ﬂ + GryvU| Z/W') G/ U] (14)

are upper bounds on ||VoV (mg)|| and |E[g] — VoV (7g)||, respectively.
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Insight: Do not Fully Personalize

* Given some weak regular assumptions on the microfoundation of agent, we
can prove that:

* If we release a piecewise constant policy with knots a4, ... a,, then all
agents that decide to manipulate their feature will move to these knots.

* This means: we can incentivize discretized through deploying a partially
personalized policy

* If principal do not extremely scheme and intrigue with agent, then
performative learning would become practically feasible.



Simulation Study

High-dimensional data and policy function



Synthetic Experiment: 3 Baselines

|.  Cutoff Policy, which only assigns treatments to those agents with positive
CATE. It’s optimal without strategic behavior. Allocates treatment to all
agents with positive CATE.

2. Vanilla Policy Gradient, which ignores the impact of policy on data
distribution, and updates the model parameters with gradient w.r.t. CATE
only.

3. End2end Policy Gradient, which models p(u | v, mg) with p(u | v, 0). We
construct this baseline method to demonstrate the benefit of taking fg
as intervention instead of 6.



Synthetic Experiment: Data Geneartion

* We construct fixed feature v from 20 dimensional standard multi-
variate Gaussian distribution, and generate u from transformation

P(u | v) = Softmax(Ww)

* The cardinality of U is 5, then we design strategic behavior
* Best response /
u = argmax, mg(u,v) — ¢ |u — ug|
* Softmax response
u' ~ Softmax (5 x (mg(u,v) — c|u — ugl))
* Noisy utility
u' = argmax,, mo(u,v) + €; — ¢ |u — ug|



Part of Result in Synthetic Experiment

Our strategic policy gradient break
it easily with stable convergence

- BB

Traditional cutoff policy is a

/ performative stable solution

Warmup stage 4
(first 30 epochs),

all methods are E
performativity-agnostic ~ 5°

—— Strategic Policy Gradient
Vanilla Policy Gradient
nd2end Policy Gradient

100

Other baselines can’t break it,

even it's performativity-aware 44



Manipulation Induced by Policies

80.0k

60.0k

count

40.0k

20.0k

0.0k

Strategic Policy Gradient
End2end Policy Gradient
Vanilla Policy Gradient
Policy: CATE>0

Initial

I III I III I III
0 1 2
u

3 4

Our method incentivize
much higher proportion of
units to increase their u.
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Performance with Noisy/Softmax Utility

5.0
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®©35 S
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2.5
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—— Strategic Policy Gradient —— Strategic Policy Gradient
ey ————————————— Cutoff Rule 15 e Cutoff Rule
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

Our method can easily incorporate other special manipulation mechanisms, beyond the classic best-
response.



Gaussian Process Classifier as Behavior Model

—— nELBO of GP
1.8 CE of MLP
4 1.7
a:) 1.6
g3 ”
g / 815
2 J 14
1.3
] — SPG with GP
SPG with MLP 1.2
0 20 40 60 80 100 0 50 100 150 200 250 300

epoch iteration

Any powerful classifier with differentiability w.r.t. its input is qualified to serve as our behavior model.



Coarser Discretization of Manipulatable Feature

* True levels of u are |5 (left) and 50 (right), while we deem it as 2, 3,4, 5, |0.

4.5
4.0

N Wbk~ O =

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
epoch epoch

The factual number of u levels has tiny impact on the performance.The gist lies in the used/deemed levels.



Basic Setting of Semi-synthetic Experiment

* Scenario: policy learning for lending (loan), 307,508 records

* Fixed feature: loan information (amount, duration, interest rate etc.),
demographics (age, profession, credits, etc.) of loan applicant

* Manipulatable feature: external credit score

* Outcome: amount of interest, with probability of loss of capital
because of default. (Y (0) = 0, control indicates rejection)



Result in Semi-synthetic Experiment (¢c=0.1)
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Manipulation Induced by Policies (¢=0.1)
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Result in Semi-synthetic Experiment (c=0.2)
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Manipulation Induced by Policies (¢=0.2)
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Main Traits of Our Methodology

* No parametric assumption on utility or data distribution

* A new pattern of limited manipulation, in the light of bounded rationality
* Causal mechanism that supports the 1y acts as intervention (versus 6)

* Use of batch feedback (versus bandit feedback)

* Targeting high-dimensional model parameters and data
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