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Introduction



Background: A/B Test

• AB test is the gold standard for modern online platform to support data-
driven decision making.

• It’s widely adopted by social platform such as LinkedIn, Wechat, to validate 
new features of product, e.g., new algorithm, new UI.

• Even the 1% relative improvement is very valuable for such large platforms.

• The demand for A/B test increases rapidly. LinkedIn and Wechat usually 
launch more than 2,000 new experiments weekly.



Background: Complexity of A/B Test

• The number of parallel experiments is limited! (resource restriction)

• The classical experiment design scales badly for modern scenario.

• The social interaction and/or supply-demand balance induces complex 
dependency among users, which challenges the analysis of bias and variance 
of causal estimator.



Background: Experimentation on Network

• Network interference happens when people on social network 
interact with each other, and the influence (on concerned metric) of 
treatment is propagated along edges.

• Platform is concerned with global average treatment effect (GATE), 
whose estimation is blurred by severe bias brought by interference.



Position of Our Work

• Interference type: interference conducted by social network

• Design : treatment allocation (contrasting post-treatment techniques, 
such as regression adjustment)

• Regime: intensity of interference is comparable to direct treatment 
effect.



Limitations of Existing Literatures

• Most existing works focus on variance reduction, while bias is also 
very important, even dominate variance, as exposed in our simulation.

• There are a variety of variance bounds of different estimators, while 
seldom of them can directly instruct experiment design.

• Many experiment designs are concerned with mathematical 
programming (such as SDP, MILP) that scale badly for social platform.



Traits of our Optimized Covariance Design

• We’re concerned with minimization of a tight MSE upper bound that 
consider bias and variance in a meanwhile.

• We derive an optimizable bound on MSE under a potential outcome 
model that enables covariance matrix of treatment vector to be 
decision variables.

• We propose a sampling procedure and a projected gradient descent 
algorithm that supports efficient optimization.



Adaptive to Between-cluster Connection

Treatment

Control

Treatment Covariance Adaptive to
Between-cluster Connections



Basic Setting

• We consider binary treatment vector

• The estimand is GATE

• We consider graph cluster randomization, and cluster-level treatment 
vector is 

τ :=
1

n

∑

i∈[n]

(Yi(1)− Yi(0))

t = (t1, t2, . . . , tK) ∈ {0, 1}K

z = (z1, z2, . . . , zn) ∈ {0, 1}n



Basic Setting

• We consider balanced cluster-level randomization

• We consider standard HT estimator (without exposure indicator)

• We consider following linear potential outcome model

P (tk = 1 | G) =
1

2
E [zi] =

1

2

τ̂ =
1

n

∑

i∈[n]

((

zi

E [zi]
−

(1− zi)

E [1− zi]

)

Yi(z)

)

Yi(z) = αi + βizi + γ
∑

j∈Ni

zj



Bias and Variance Analysis



Bias of HT Estimator

• Firstly, we define a core term in our methodology, which characterizes 
the connections between/within clusters. Here 𝑆! is the 𝑘-th cluster

• Now we can present the bias of HT estimator under our model

• This bias formula implies
• Only connections between clusters can contribute to bias.
• Only positive correlation can reduce bias.

Cij = |{(u, v) : (u, v) ∈ E , u ∈ Si, v ∈ Sj}|

E[τ̂ ]− τ =
γ

n

⎛

⎝4 trace(C Cov[t])−
∑

i,j∈[K]

Cij

⎞

⎠



Variance of HT Estimator

• To derive a clean variance, we must introduce an assumption on base 
level 𝛼" , which is we know all base levels in advance. 

• This assumption is reasonable for social platform since they collect 
concerned metrics constantly, and it remove the giant influence of 𝛼"
in variance (since 𝛼"≫ 𝛽" in such experiments)

• Based on it, we can derive the expression of variance.
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Methodology



Bypass Parameter Estimation

• The expression of variance can’t be optimized directly without 
knowing interference intensity 𝛾 in advance. 
• We introduce following comparability assumption that restricts our 

scope to the scene that interference is comparable to direct 
treatment effect



Bypass Parameter Estimation

• Now we can construct a variance bound that depends on experiment 
design only through covariance matrix of treatment vector. 

• Moreover, this bound is well-crafted and allow us to bypass the 
estimation on 𝛾: if we’re concerned with minimize this bound, 𝛾#is a 
common multiplier in squared bias and variance bound!



Enable Sampling Following Optimized Covariance

• Before we finish the formulation of optimizing the covariance matrix, 
we should guarantee two points
• The covariance matrix is legal for multi-variate Bernoulli distribution.
• We can sample treatment vector that’s subject to such covariance.

• To realize it, we introduce the Grothendieck’s identity and a 
Cholesky-based parameterization, and the covariance matrix is 
parameterized as

X(R) =
arcsin

(

RRT
)

2π



Optimization Issues

• Through this parameterization, the constraints is simplified significantly.

• We verify that row-normalization is a projection to feasible domain, and 
propose a projected gradient descent algorithm for the optimization.

• After optimization, we can sample directly from desired distribution

t =
1+ sgn (R∗N (0, IK))

2



Simulation Result

• Our optimized covariance design present significant improvement on 
both statistical metrics (bias, variance, MSE), and computational efficiency.


