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Optimized Covariance Design for AB Test on 
Social Network under Interference

Better experimental design on social network
with scalable optimization

Existing network experimental design research was mostly based on the unbiased 
Horvitz-Thompson (HT) estimator with substantial data trimming to ensure 
unbiasedness at the price of high resultant estimation variance.
The analyses of bias and variance in most existing works are presented in rate 
form, which is not only weakly connected to network topology but also hardly 
instruct us how to design experiment.
Many of them rely on a mathematical programming or a sequential optimization, 
which may be inefficient and can’t scale well for large network.

We guarantee the covariance to be valid in the optimization process with 
parameterization enlightened by following Grothendieck’s identity

• We derive a well-crafted upper bound for the MSE of the HT estimator 
that decouples the estimation of causal mechanism and experimental 
design. This enables us to optimize the experimental design by 
minimizing this bound, in which the covariance matrix of treatment vector 
acts as decision variables.

• We propose the formulation of covariance optimization problem with 
reparameterization of covariance matrix and constraints that guarantees 
legitimate sampling subject to optimized covariance matrix, and a 
projected gradient descent algorithm is proposed for solving the 
optimization problem.

• We conduct systematic simulation on two social networks and compare 
our method with several methods proposed recently under a range of 
settings, providing credible reference for the effectiveness of our method.

Bias and variance analysis under linear 
potential outcome model
Bias of HT estimator

Basic setting of our work
Our basic scheme is cluster-level randomization with ! "! = 1/2

The information of clusters is summarized as cluster sizes in former work (e.g. independent block 
randomization), and we extend it greatly to the whole C matrix.
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Optimized covariance matrix

The interested estimand is global average treatment effect (GATE)

τ :=
1

n

∑

i∈[n]

(Yi(1)− Yi(0))

The considered linear potential outcome model
Yi(z) = αi + βizi + γ

∑

j∈Ni

zj

We consider standard HT estimator (without exposure indicator)

τ̂ =
1

n

∑

i∈[n]

((

zi

E [zi]
−

(1− zi)

E [1− zi]

)

Yi(z)

)

Cij = |{(u, v) : (u, v) ∈ E , u ∈ Si, v ∈ Sj}|

The C matrix characterize within/between cluster connections

E[τ̂ ]− τ =
γ

n

⎛
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Well-crafted variance bound

Var[τ̂ ] ≤
8γ2

(

ω
2 + 4

)

n2
trace

(

dd
T

(

Cov[t] +
1

4
11

T

))

Let x, y be n-dimensional real unit vectors and let g = (g1, . . . , gn) ∼ N (0, In)
be an n-dimensional standard Gaussian vector. Then,

E[sign(⟨x, g⟩) sign(⟨y, g⟩)] =
2

π
arcsin(⟨x, y⟩)

Optimize the covariance matrix through 
minimizing MSE upper bound

min
R

M(R) = B(X(R))2 + V̄ω(X(R))

s.t. X(R) =
arcsin(RRT )

2π
(RRT )i,j ∈ [−1, 1] ∀i ̸= j, i, j ∈ [K]

(RRT )i,i = 1 ∀i ∈ [K]

The final optimization problem is 

A simple projected gradient descent can be applied, where row-
normalization is applied on R in every epoch.

This variance bound is concerned with a constant ' that characterizes the 
comparability between interference and direct treatment effect. (' is fixed 
as 1 in all of our simulations, and can be adjusted according to belief.)

Some simulation results

After the optimization problem is solved, we can sample from a multi-
variate Bernoulli distribution directly through a reparameterization of the 
multivariate Gaussian distribution. 

t =
1+ sgn (R∗N (0, IK))
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