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Better experimental design on social network
with scalable optimization

Bias and variance analysis under linear
potential outcome model
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Bias of HT estimator

Existing network experimental design research was mostly based on the unbiased
Horvitz-Thompson (HT) estimator with substantial data trimming to ensure (
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unbiasedness at the price of high resultant estimation variance. Blf] -7 = n

The analyses of bias and variance in most existing works are presented in rate Well-crafted vari bound

form, which is not only weakly connected to network topology but also hardly eli-cranied variance boun
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instruct us how to design experiment. Varl#] < 8 (WQ +4) frace (ddT <Cov[t] N lllT)>

Many of them rely on a mathematical programming or a sequential optimization, n 4

which may be inefficient and can’t scale well for large network.
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This variance bound is concerned with a constant w that characterizes the
comparability between interference and direct treatment effect. (w is fixed
as 1 in all of our simulations, and can be adjusted according to belief.)

The information of clusters is summarized as cluster sizes in former work (e.g. independent block

» \We derive a well-crafted upper bound for the MSE of the HT estimator randomization), and we extend it greatly to the whole C matrix.

that decouples the estimation of causal mechanism and experimental
design. This enables us to optimize the experimental design by

minimizing this bound, in which the covariance matrix of treatment vector 1252 36610 102 308 18 0.2498 —0.1579 —-0.1038 —0.2490
o : S . . 622 xtend 102 5834 261 334 | Optimize | —0.1579  0.2498 0.1906 0.1584
acts as decision variables, Optlmlze the Ccovariance matrlx through 342 = 308 261 25868 473 = —0.1038  0.1906 0.2498 0.1043
- We propose.the.formulatlon. of covarla.nce optlmlza.tlon problem with mlnlmlzmg MSE upper bound 293 18 934 473 8319 02490 0.1584  0.1043  0.2498
reparameterization of covariance matrix and constraints that guarantees — —— . ~— ~ \ ~— ~
Cluster sizes C matrix Optimized covariance matrix

legitimate sampling subject to optimized covariance matrix, and a
projected gradient descent algorithm is proposed for solving the
optimization problem.

« We conduct systematic simulation on two social networks and compare
our method with several methods proposed recently under a range of

We guarantee the covariance to be valid in the optimization process with

parameterization enlightened by following Grothendieck’s identity Some simulation results

Let z,y be n-dimensional real unit vectors and let ¢ = (g1,...,9n) ~ N (0, 1,)

be an n-dimensional standard Gaussian vector. Then, Table 1: The average bias, standard deviation and MSE of HT estimator under linear model

settings, providing credible reference for the effectiveness of our method. 9 gamma 0.5 1.0 2.0
Efsign((z, 9)) sign({y, 9))] = — arcsin((z, y)) metric Bias SD MSE Bias SD MSE Bias SD  MSE
| - | method
The final optimization problem s Ber 0293 0521 0358  -0.588 0.584 0688  -1.178 0.709 1.893
i in f rw rk . _ 9 = CR -0.292 0.409 0.253 -0.586 0.459 0.554 -1.177 0.562 1.702
Basic setting of our wo min M(R) = BIX(R))" + Vo (X (R)) ReAR 0393 0227 0206  -0.700 0251 0554  -1.317 0303 1.829
| | - arcsin(RET) PSR -0295 0235 0.143  -0.587 0264 0415  -1.179 0323 1.496
Our basic scheme is cluster-level randomization with E[z;] = 1/2 s.t. X(R) = 5 IBR 20298 0273 0.164 20593 0308 0.447 1181 0380 1.541
The interested estimand is global average treatment effect (GATE) (RR");; € [-1,1] Vi#j, i,j € [K] gS(l:{Dp 8%33 83&% g;g; gggg 822; gggi (1)%22 82%2 (1)3%
1 (RR");s =1 Vi € |K]
T ,62[:] Fi(1) = %i(0)) Table 2: The average bias, standard deviation and MSE of HT estimator under multiplicative model

We consider standard HT estimator (without exposure indicator)
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The considered linear potential outcome model
Yi(2) = a; + Bizi + 7 Z Zj
EN;
The C matrix characterize within/betwéen cluster connections
Cij = {(u,v): (u,v) € E,u € S;,ve s}

A simple projected gradient descent can be applied, where row-
normalization is applied on R in every epoch.

After the optimization problem is solved, we can sample from a multi-
variate Bernoulli distribution directly through a reparameterization of the
multivariate Gaussian distribution.

‘ 1+sgn (R*N (0,Ik))
B 2

gamima 0.5 1.0 2.0

metric Bias SD MSE Bias SD MSE Bias SD MSE
method

Ber -0.365 0.348 0.255 -0.736  0.394 0.698 -1.475 0493 2421
CR -0.368 0.235 0.191 -0.744 0.274 0.629 -1.477 0336 2.297
ReAR -0.402 0.178 0.194 -0.809 0.174 0.685 -1.548 0.226 2.450
PSR -0.366 0.134 0.152 -0.738 0.153 0.569 -1.479 0.192 2.227
IBR -0.369 0.155 0.161 -0.737 0.178 0.576 -1.484 0.221 2.252
IBR-p -0.368 0.163 0.163 -0.739 0.185 0.581 -1.482 0.232 2.252
OCD -0.258 0.040 0.069 -0.517 0.050 0.271 -1.034 0.054 1.073




